【題目】如圖,在菱形ABCD中,∠A=60°,AD=8,F是AB的中點(diǎn),過點(diǎn)F作FE⊥AD,垂足為E,將△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A′E′F′.
(1)求EF的長(zhǎng);
(2)設(shè)P,P′分別是EF,E′F′的中點(diǎn),當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí),求證四邊形PP′CD是平行四邊形,并求出四邊形PP′CD的面積.
【答案】(1)2;(2)28.
【解析】
(1)首先求出AF的長(zhǎng)度,再在直角三角形AEF中求出EF的長(zhǎng)度;
(2)連接BD,DF,DF交PP′于H.首先證明四邊形PP′CD是平行四邊形,再證明DF⊥PP′,求出DH的長(zhǎng),最后根據(jù)面積公式求出答案.
(1)∵四邊形ABCD是菱形,
∴AD=AB=8,
∵F是AB的中點(diǎn),
∴AF=AB=×8=4,
∵點(diǎn)F作FE⊥AD,∠A=60°,
∴∠AFE=30°,
∴AE=,
∴EF=2;
(2)如圖,連接BD,DF,DF交PP′于H.
由題意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四邊形PP′CD是平行四邊形,
∵四邊形ABCD是菱形,∠A=60°,
∴△ABD是等邊三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF==4,
∴DH=4﹣=,
∴平行四邊形PP′CD的面積=×8=28.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4交x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>x+b的解集;
(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2AD,BE平分∠ABC交CD于點(diǎn)E,作BF⊥AD,垂足為F,連接EF,小明得到三個(gè)結(jié)論:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;則三個(gè)結(jié)論中一定成立的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角項(xiàng)點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,ON落在OC邊上,則t= 秒(直接寫結(jié)果).
(2)在(1)的條件下,若三角板繼續(xù)轉(zhuǎn)動(dòng),同時(shí)射線OC也繞O點(diǎn)以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,當(dāng)OC轉(zhuǎn)動(dòng)9秒時(shí),求∠MOC的度數(shù).
(3)在(2)的條件下,它們繼續(xù)運(yùn)動(dòng)多少秒時(shí),∠MOC=35°?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示數(shù)1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng):第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第2次將點(diǎn)向右平移6個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第3次將點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)…,按照這種規(guī)律移動(dòng)下去,則第2017次移動(dòng)到點(diǎn)時(shí),在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.國(guó)慶節(jié)期間商場(chǎng)決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該商場(chǎng)購(gòu)買西裝20套,領(lǐng)帶x.
(1)若該客戶按方案一購(gòu)買,需付款多少元(用含x的式子表示)?若該客戶按方案二購(gòu)買,需付款多少元(用含x的式子表示)?
(2)若,通過計(jì)算說明此時(shí)按哪種方案購(gòu)買較為合算;
(3)當(dāng)時(shí),你能給出一種更為省錢的購(gòu)買方法嗎?試寫出你的購(gòu)買方法和所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,P是BC邊上一動(dòng)點(diǎn)(點(diǎn)P不與B、C重合),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA、NA,則以下結(jié)論:①△CMP∽△BPA;②四邊形AMCB的面積最大值為2.5;③△ADN≌△AEN;④線段AM的最小值為2.5;⑤當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線.正確的有_____(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計(jì)劃平均每天生產(chǎn)200輛,但是由于種種原因,實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入。表是某周的生產(chǎn)情況(超產(chǎn)記為正,減產(chǎn)記為負(fù)):
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期三生產(chǎn)自行車多少輛?
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)自行車多少輛?
(3)根據(jù)記錄的數(shù)據(jù)可知該廠本周實(shí)際共生產(chǎn)自行車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為任意三角形,以AB、AC為邊分別向外做等邊△ABD和等邊△ACE,連接CD、BE并相交于點(diǎn)P.求證:
(1)CD=BE;
(2)∠BPC=120°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com