【題目】如果把向西走2米記為﹣2米,則向東走3米表示為米.

【答案】+3
【解析】解:把向西走2米記為﹣2米,那么向東走3米記為+3米,
所以答案是:+3.
【考點(diǎn)精析】本題主要考查了正數(shù)與負(fù)數(shù)的相關(guān)知識點(diǎn),需要掌握大于0的數(shù)叫正數(shù);小于0的數(shù)叫負(fù)數(shù);0既不是正數(shù)也不是負(fù)數(shù);正數(shù)負(fù)數(shù)表示具有相反意義的量才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠C=90°,A=30°,在直線AC上找點(diǎn)P,使ABP是等腰三角形,則∠APB的度數(shù)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中能夠成立的是(  )

A. x+2y2=x2+2xy+4y2 B. x+2y2=x2+4y2

C. xy2=x2﹣2xyy2 D. ab2=(ba2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人沿同一條路從A地到B地.l1,l2分別表示甲、乙兩人離開A地的距離s(km)與時間t(h)之間的關(guān)系.

(1) 乙先出發(fā)________h后,甲才出發(fā);

(2) 請分別求出甲乙的速度;并直接寫出l1、、l2的表達(dá)式.

(3) 甲到達(dá)B地時乙距B地還有多遠(yuǎn)?,乙還需幾小時到達(dá)B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣2xym和xny3是同類項(xiàng),則m和n的值分別為( )
A.m=1,n=1
B.m=1,n=3
C.m=3,n=1
D.m=3,n=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,部分同學(xué)準(zhǔn)備開展社會實(shí)踐活動,決定外出調(diào)研某名勝風(fēng)景點(diǎn)的環(huán)境污染情況,為此需在風(fēng)景點(diǎn)周邊住一晚.某旅店只有二人間和三人間兩種房型,二人間每晚需50元,三人間每晚需60元,并且二人間的數(shù)量不超過9間,三人間比二人間的房間數(shù)要少.有同學(xué)計(jì)算了一下,如果只住二人間,則還有5人無房可住,如果只住三人間,則只剩下1人沒地方。
(1)參加此次活動的同學(xué)有多少位?
(2)同學(xué)們此次住宿花費(fèi)了430元,請你算算,同學(xué)租住的二人間和三人間各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,然后解答提出的問題:

設(shè)a,b是有理數(shù),且滿足a+b=32,求ba的值.

解:由題意得(a3+b+2=0,因?yàn)?/span>a,b都是有理數(shù),所以a3,b+2也是有理數(shù),

由于是無理數(shù),所以a3=0,b+2=0,所以a=3,b=2,所以ba=23=8.問題:設(shè)x,y都是有理數(shù),且滿足x22y+y=8+4,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動,同時動點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時整個運(yùn)動都停止. 設(shè)點(diǎn)M運(yùn)動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處;

1)求證:B′E=BF;

2)設(shè)AE=aAB=b,BF=C,試猜想a,b,c之間的一種關(guān)系,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案