【題目】已知等邊三角形ABC.如圖,

1)分別以點(diǎn)A,B為圓心,大于的AB長為半徑作弧,兩弧相交于M,N兩點(diǎn);

2)作直線MNAB于點(diǎn)D;

2)分別以點(diǎn)AC為圓心,大于AC的長為半徑作弧,兩弧相交于HL兩點(diǎn);

3)作直線HLAC于點(diǎn)E;

4)直線MN與直線HL相交于點(diǎn)O;

5)連接OA,OBOC

根據(jù)以上作圖過程及所作圖形,下列結(jié)論:OB2OE;AB2OA;OAOBOC;DOE120°,正確的是( 。

A.①②③④B.①③④C.①②③D.③④

【答案】B

【解析】

根據(jù)等邊三角形的性質(zhì),三角形的外心,三角形的內(nèi)心的性質(zhì)一一判斷即可.

解:由作圖可知,點(diǎn)O是△ABC的外心,

∵△ABC是等邊三角形,

∴點(diǎn)O是△ABC的外心也是內(nèi)心,

OB2OE,OAOBOC,

∵∠BAC60°,∠ADO=∠AEO90°,

∴∠DOE180°﹣60°=120°,

①③④正確,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O

1)作B的平分線與O交于點(diǎn)D(用尺規(guī)作圖,不用寫作法,但要保留作圖痕跡);

2)在(1)中,連接AD,BAC=60°,C=66°,DAC的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(-1,y1),(2,y2),(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是( )

A. y1y2y3 B. y1y3y2 C. y3y1y2 D. y2y3y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組

1請直接寫出方程的所有正整數(shù)解

2若方程組的解滿足x+y=0,m的值

3無論實(shí)數(shù)m取何值,方程x2y+mx+5=0總有一個固定的解,請直接寫出這個解?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組乘一輛檢修車沿鐵路檢修,規(guī)定向東走為正,向西走為負(fù),該小組的出發(fā)地記為A,某天檢修完畢時,行走記錄(單位.千米)如下.

+10,-2,+3,-1,+5,-3,-2,+11,+3-4,+6

1)問收工時,檢修小組距出發(fā)地有多遠(yuǎn)?在東側(cè)還是西側(cè)?

2)距離A最近的一次是哪一次?距離多遠(yuǎn)?

3)若檢修車每千米耗油2.8升,求從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A4,2)、Bn,4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求AOB的面積;

3)觀察圖象,直接寫出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ABC中,ABAC,ADBC于點(diǎn)D,延長AB至點(diǎn)E,使AECDAB.判斷CEAD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】回答下列問題:

1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?

2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點(diǎn)個數(shù)為v,棱數(shù)為e,分別計(jì)算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?

3)應(yīng)用上述規(guī)律解決問題:一個多面體的頂點(diǎn)數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).

查看答案和解析>>

同步練習(xí)冊答案