【題目】回答下列問題:
(1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?
(2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點個數(shù)為v,棱數(shù)為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?
(3)應用上述規(guī)律解決問題:一個多面體的頂點數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).
【答案】(1)甲是長方體,乙是五棱錐;(2)甲:=2,乙:=2,規(guī)律:頂點數(shù)+面數(shù)-棱數(shù)=2;(3)22.
【解析】(1)根據(jù)平面圖形的展開圖的特征即可作出判斷;
(2)分別數(shù)出甲、乙兩個平面圖形圍成的幾何體的面數(shù)、頂點個數(shù)、棱數(shù),即可得到規(guī)律;
(3)設這個多面體的面數(shù)為,根據(jù)(2)中得到的規(guī)律即可列方程求解.
解:(1)甲是長方體,乙是五棱錐;
(2)甲:f=6,e=12,v=8,f+v–e=2
乙:f=6,e=10,v=6,f+v–e=2
規(guī)律:頂點數(shù)+面數(shù)-棱數(shù)=2;
(3)設這個多面體的面數(shù)為,由題意得
+ +8-50=2,解得=22
答:這個幾何體的面數(shù)為22.
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊三角形ABC.如圖,
(1)分別以點A,B為圓心,大于的AB長為半徑作弧,兩弧相交于M,N兩點;
(2)作直線MN交AB于點D;
(2)分別以點A,C為圓心,大于AC的長為半徑作弧,兩弧相交于H,L兩點;
(3)作直線HL交AC于點E;
(4)直線MN與直線HL相交于點O;
(5)連接OA,OB,OC.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正確的是( 。
A.①②③④B.①③④C.①②③D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“每天在校體育活動時間”的問題隨機抽樣調(diào)查了321名初中學生.根據(jù)調(diào)查結(jié)果將學生每天在校體育活動時間t(小時)分成,,,四組,并繪制了統(tǒng)計圖(部分).
組:組:組:組:
請根據(jù)上述信息解答下列問題:
(1)組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市約有12840名初中學生,請你估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】生活與數(shù)學
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
(1)姆同學在某月的日歷上圈出2×2個數(shù),正方形的方框內(nèi)的四個數(shù)的和是48,那么這四個數(shù)是_______.
(2)麗也在上面的日歷上圈出2×2個數(shù),斜框內(nèi)的四個數(shù)的和是46,則它們分別是_____.
(3)莉也在日歷上圈出5個數(shù),呈十字框形,它們的和是55,則中間的數(shù)是______.
(4)某月有5個星期日的和是75,則這個月中最后一個星期日是______號?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且.連接PB,試探究PA,PB,PC滿足的等量關(guān)系.
圖1 圖2
(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關(guān)系為 ;
(2)如圖2,當α=120°時,請參考(1)中的方法,探究PA,PB,PC滿足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡長AB=10米,求小船C到岸邊的距離CA的長?(參考數(shù)據(jù):=1.73,結(jié)果保留兩位有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點E,F,BE,CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,把R△ABC繞著B點逆時針旋轉(zhuǎn),得到Rt△DBE,點E在AB上 .
(1)若∠BDA=70°,求∠BAC的度數(shù);
(2)若BC=8,AC=6,求△ABD中AD邊上的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,D、E分別為AB、AC上的點,線段BE、CD相交于點O,且.
求證: ∽;
求證: ;
若M、N分別是BE、CD的中點,過MN的直線交AB于P,交AC于Q,線段AP、AQ相等嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com