【題目】如圖,在△ABC中,∠ACB=90°,AC=3,BC=1,點(diǎn)D是斜邊上一點(diǎn),且AD=4BD.
(1)求tan∠BCD的值;
(2)過(guò)點(diǎn)B的⊙O與邊AC相切,切點(diǎn)為AC的中點(diǎn)E,⊙O與直線(xiàn)BC的另一個(gè)交點(diǎn)為F.
(ⅰ)求⊙O的半徑;
(ⅱ) 連接AF,試探究AF與CD的位置關(guān)系,并說(shuō)明理由.
【答案】(1)tan∠BCD=;(2)(ⅰ);(ⅱ) AF與CD的位置關(guān)系是AF⊥CD,理由見(jiàn)解析.
【解析】
(1)作DM⊥BC,得到△DMB∽△ACB,利用相似三角形對(duì)應(yīng)邊成比例結(jié)合AD=4BD,AC=3,BC=1,即可求得tan∠DCM的值;
(2)(ⅰ)連接OE,OF,作OH⊥BE,證得OHCE為矩形,設(shè)⊙O的半徑為,得到OF=OE=CH=,OH=CE=,HF=BH=CH-BC=,在Rt△OHF中,利用勾股定理即可得解;
(ⅱ)延長(zhǎng)CD交AF于點(diǎn)K,由(ⅰ)知CF,求得tan∠CAF,由于tan∠BCD=,得到∠CAF=∠BCD,從而得到AF與CD的位置關(guān)系是AF⊥CD.
(1)如圖,過(guò)D作DM⊥BC,垂足M.
∵∠ACB=90°,
∴DM∥AC.
∴△DMB∽△ACB.
∵AD=4BD,AC=3,BC=1,
∴,即,
∴,,則,
∴在Rt△DMC中,tan∠DCM=,
(2)(ⅰ) 如圖,連接OE,OF,
∵⊙O與AC相切于AC中點(diǎn)E,
∴OE⊥AC.
作OH⊥BE,垂足為H,
∵∠ACB=90°,
∴OHCE為矩形.
設(shè)⊙O的半徑為,則OF=OE=CH=.
OH=CE=AC=,HF=BH=CH-BC=.
∴在Rt△OHF中,,
∴,
解得:r=;
(2)(ⅱ) AF與CD的位置關(guān)系是AF⊥CD,
理由如下:
如圖,延長(zhǎng)CD交AF于點(diǎn)K,
由(ⅰ)知,CF=BC+BF=1+2,
在Rt△ACF中,∠ACB=90°,
∴tan∠CAF=,
∵tan∠BCD=,
∴∠CAF=∠BCD,即∠CAF=∠FCK,
∵∠CAF+∠F=90°,
∴∠FCK+∠F=90°,
即AF⊥CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)決定在學(xué)生中開(kāi)展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)m= ,n= ,p= ;
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)L:y=mx2+nx-6經(jīng)過(guò)點(diǎn)(-2,2),與x軸相交于A(-3,0)和B兩點(diǎn),并與y軸相交于點(diǎn)C.拋物線(xiàn)L′與L關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),點(diǎn)A,B在L′上的對(duì)應(yīng)點(diǎn)分別為A′和B′.
(1)求拋物線(xiàn)L的函數(shù)表達(dá)式.
(2)在拋物線(xiàn)L′上是否存在點(diǎn)P,使得△PA′A的面積等于△CB′B的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、D在反比例函數(shù)的圖像上,點(diǎn)B、C在反比例函數(shù)的圖像上,若AB∥CD∥軸,∥軸,且,,,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過(guò)點(diǎn)B的直線(xiàn)折疊,點(diǎn)O恰好落在弧AB上點(diǎn)C處,折痕交OA于點(diǎn)D,則圖中陰影部分的面積為_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1在直線(xiàn)l1:y=x上,過(guò)點(diǎn)A1作x軸的平行線(xiàn)交直線(xiàn)l2:y=x于點(diǎn)B1,
過(guò)點(diǎn)B1作l2的垂線(xiàn)交l1于點(diǎn)A2,過(guò)點(diǎn)A2作x軸的平行線(xiàn)交直線(xiàn)l2于點(diǎn)B2,過(guò)點(diǎn)B2作l2的垂線(xiàn)交l1于點(diǎn)A3,過(guò)點(diǎn)A3作x軸的平行線(xiàn)交直線(xiàn)l2于點(diǎn)B3,……,過(guò)點(diǎn)B1,B2,B3,……,分別作l1的平行線(xiàn)交A2B2于點(diǎn)C1,交A3B3于點(diǎn)C2,交A4B4于點(diǎn)C3,……,按此規(guī)律繼續(xù)下去,若OA1=1,則點(diǎn)的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,弦CD與AB交于點(diǎn)E,連接AD,過(guò)點(diǎn)A作直線(xiàn)MN,使∠MAC=∠ADC.
(1)求證:直線(xiàn)MN是⊙O的切線(xiàn).
(2)若sin∠ADC=,AB=8,AE=3,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)過(guò)點(diǎn)A(-1,0),B(4,0),與y軸相交于點(diǎn)C.
(1)求拋物線(xiàn)的解析式;
(2)在x軸正半軸上存在點(diǎn)E,使得△BCE是等腰三角形,請(qǐng)求出點(diǎn)E的坐標(biāo);
(3)如圖2,點(diǎn)D是直線(xiàn)BC上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)D作DM⊥BC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠ABC的2倍?若存在,請(qǐng)求出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,二次函數(shù)(其中,是常數(shù),為正整數(shù))
(1)若經(jīng)過(guò)點(diǎn)求的值.
(2)當(dāng),若與軸有公共點(diǎn)時(shí)且公共點(diǎn)的橫坐標(biāo)為非零的整數(shù),確定的值;
(3)在(2)的條件下將的圖象向下平移個(gè)單位,得到函數(shù)圖象,求的解析式;
(4)在(3)的條件下,將的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)結(jié)合新的圖象解答問(wèn)題,若直線(xiàn)與有兩個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com