【題目】如圖,已知點(diǎn)O在直線(xiàn)AB上,將一副直角三角板的直角頂點(diǎn)放在點(diǎn)O處,其中OCD=60°,∠OEF=45°.邊OC、OE在直線(xiàn)AB上.

(1)如圖(1),若CDEF相交于點(diǎn)G,則DGF的度數(shù)是______°;

(2)將圖(1)中的三角板OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°至圖(2)位置

①若將三角板OEF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,在此過(guò)程中,當(dāng)COE=∠EOD=∠DOF時(shí),求AOE的度數(shù);

②若將三角板OEF繞點(diǎn)O以每秒的速度順時(shí)針旋轉(zhuǎn)180°,與此同時(shí),將三角板OCD繞點(diǎn)O以每秒的速度順時(shí)針旋轉(zhuǎn),當(dāng)三角板OEF旋轉(zhuǎn)到終點(diǎn)位置時(shí),三角板OCD也停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時(shí)間為t秒,當(dāng)ODEF時(shí),求t的值.

【答案】(1)15;(2)當(dāng)∠COE=∠EOD=∠DOF時(shí),∠AOE=75°;②當(dāng)OD⊥EF時(shí),t的值為25.

【解析】

(1)根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;
(2)①如圖2,根據(jù)已知條件求出∠COE=EOD=45°,得到∠AOE=AOC+COE=30°+45°=75°,當(dāng)∠COE=EOD=DOF時(shí),求得結(jié)論;②根據(jù)垂直的定義得到ODEF,得到∠OHE=90,列方程求得結(jié)論.

1)∵∠EFO=45°,∠D=30°,

∴∠DGF=∠EFO-∠D=45°-30°=15°,

故答案為:15;

(2)①如圖2,

∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,

∴∠COE=∠EOD=45°,

∴∠AOE=∠AOC+∠COE=30°+45°=75°,

當(dāng)∠COE=∠EOD=∠DOF時(shí),∠AOE=75°;

②∵∠AOE=4t°,∠AOC=30°+t°,如圖3,

∵OD⊥EF,

∴∠OHE=90,

∵∠E=45°,∠COD=90°,

∴∠COE=45°,

∴∠AOE-∠AOC=∠COE=45°,

4t-(30+t)=45,

∴t=25,

當(dāng)OD⊥EF時(shí),t的值為25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一廣告墻PQ旁有兩根直立的木桿AB和CD , 某一時(shí)刻在太陽(yáng)光下,木桿CD的影子剛好不落在廣告墻PQ上,

(1)你在圖中畫(huà)出此時(shí)的太陽(yáng)光線(xiàn)CE及木桿AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距離DQ的長(zhǎng)為4米,求此時(shí)木桿AB的影長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,DBC中點(diǎn),BE、CF與射線(xiàn)AE分別相交于點(diǎn)E、F(射線(xiàn)AE不經(jīng)過(guò)點(diǎn)D).

(1)如圖①,當(dāng)BECF時(shí),連接ED并延長(zhǎng)交CF于點(diǎn)H. 求證:四邊形BECH是平行四邊形;

(2)如圖②,當(dāng)BEAE于點(diǎn)ECFAE于點(diǎn)F時(shí),分別取AB、AC的中點(diǎn)MN,連接ME、MD、NF、ND. 求證:∠EMD=∠FND.

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=2x+2ay=-x+b的圖象都經(jīng)過(guò)點(diǎn)A(-2,a),且與x軸分別交于B,C兩點(diǎn),則△ABC的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小東用長(zhǎng)為3.2m的竹竿做測(cè)量工具測(cè)量學(xué)校旗桿的高度,移動(dòng)竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)相距8m,與旗桿相距22m,則旗桿的高為( 。
A.12m
B.10m
C.8m
D.7m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某檢修小組從A地出發(fā),在東西方向的公路上檢修線(xiàn)路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛,紀(jì)錄如下(單位:km)

1

2

3

4

5

6

7

﹣4

+7

﹣9

+8

+6

﹣5

﹣2

則收工時(shí)距A地多遠(yuǎn)?在第幾次紀(jì)錄時(shí)距A地最遠(yuǎn)?

A. 2千米 1 B. 1千米 2

C. 2千米 4 D. 1千米 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)為(

﹣a一定是負(fù)數(shù);②一個(gè)有理數(shù)不是整數(shù)就是分?jǐn)?shù);③任何一個(gè)有理數(shù)的平方都是正數(shù);④倒數(shù)等于它本身的數(shù)是±1;⑤絕對(duì)值等于它本身的數(shù)是0;⑥任何一個(gè)有理數(shù)的絕對(duì)值都是正數(shù)

A. 0 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有一個(gè)兩層樓的餐廳,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的某個(gè)樓層的餐廳用餐,則甲、乙、丙三名學(xué)生在同一個(gè)樓層餐廳用餐的概率為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB=4,點(diǎn)O是線(xiàn)段AB上的點(diǎn),點(diǎn)C,D是線(xiàn)段OA,OB的中點(diǎn),小明很輕松地求得CD=2.

(1)小明在反思過(guò)程中突發(fā)奇想:若點(diǎn)O運(yùn)動(dòng)到線(xiàn)段AB的延長(zhǎng)線(xiàn)上則原有的結(jié)論“CD=2”是否仍然成立呢?請(qǐng)幫小明畫(huà)出圖形分析,并說(shuō)明理由.

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到直線(xiàn)AB外時(shí),結(jié)論“CD=2”是否還成立?請(qǐng)利用刻度尺驗(yàn)證你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案