【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是線(xiàn)段BC的中點(diǎn),∠EDF120°,把

EDF繞點(diǎn)D旋轉(zhuǎn),使∠EDF的兩邊分別與線(xiàn)段AB、AC交于點(diǎn)EF

1)當(dāng)DFAC時(shí),求證:BECF;

2)在旋轉(zhuǎn)過(guò)程中,BE+CF是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由;

3)在旋轉(zhuǎn)過(guò)程中,連接EF,設(shè)BEx,△DEF的面積為S,求Sx之間的函數(shù)解析式,并求S的最小值.

【答案】1)見(jiàn)解析;(2BE+CF2,是為定值;(3Sx12,當(dāng)x1時(shí),S最小值為.

【解析】

1)根據(jù)四邊形內(nèi)角和為360°,可求∠DEA90°,根據(jù)“AAS”可判定△BDE≌△CDF,即可證BECF

2)過(guò)點(diǎn)DDMABM,作DNACN,如圖2,易證△MBD≌△NCD,則有BMCNDMDN,進(jìn)而可證到△EMD≌△FND,則有EMFN,就可得到BE+CFBM+EM+CFBM+FN+CFBM+CN2BM2BD×cos60°=BDBC2

3)過(guò)點(diǎn)FFGAB,由題意可得SDEFSABCSAEFSBDESBCF,則可求Sx之間的函數(shù)解析式,根據(jù)二次函數(shù)最值的求法,可求S的最小值.

1)∵△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是線(xiàn)段BC的中點(diǎn),

∴∠B=∠C60°,BDCD,

DFAC

∴∠DFA90°,

∵∠A+∠EDF+∠AFD+∠AED180°,

∴∠AED90°,

∴∠DEB=∠DFC,且∠B=∠C60°,BDDC,

∴△BDE≌△CDFAAS

2)過(guò)點(diǎn)DDMABM,作DNACN,

則有∠AMD=∠BMD=∠AND=∠CND90°.

∵∠A60°,

∴∠MDN360°﹣60°﹣90°﹣90°=120°.

∵∠EDF120°,

∴∠MDE=∠NDF

在△MBD和△NCD中,

∴△MBD≌△NCDAAS

BMCNDMDN

在△EMD和△FND中,,

∴△EMD≌△FNDASA

EMFN,

BE+CFBM+EM+CFBM+FN+CFBM+CN

2BM2BD×cos60°=BDBC2

3)過(guò)點(diǎn)FFGAB,垂足為G,

BEx

AE4x,CF2x,

AF2+x,

SDEFSABCSAEFSBDESBCF

SBC×AB×sin60°﹣AE×AF×sin60°﹣BE×BD×sin60°﹣CF×CD×sin60°

4×(4x)×(2+x)××x×2××(2x)×2×

Sx12+

∴當(dāng)x1時(shí),S最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩千多年前,我國(guó)的學(xué)者墨子和他的學(xué)生做了小孔成像的實(shí)驗(yàn).他的做法是,在一間黑暗的屋子里,一面墻上開(kāi)一個(gè)小孔,小孔對(duì)面的墻上就會(huì)出現(xiàn)外面景物的倒像.小華在學(xué)習(xí)了小孔成像的原理后,利用如圖裝置來(lái)驗(yàn)證小孔成像的現(xiàn)象.已知一根點(diǎn)燃的蠟燭距小孔20 cm,光屏在距小孔30 cm處,小華測(cè)量了蠟燭的火焰高度為2 cm,則光屏上火焰所成像的高度為__________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置個(gè)平面鏡E,使得B,E,D在同一水平線(xiàn)上,如圖所示.該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到旗桿頂A(此時(shí)∠AEB=FED).F處測(cè)得旗桿頂A的仰角為39.3°,平面鏡E的俯角為45°,F(xiàn)D=1.8,問(wèn)旗桿AB的高度約為多少米? (結(jié)果保留整數(shù))(參考數(shù)據(jù):tan39.3°≈0.82,tan84.3°≈10.02)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=120°D,EBC上的兩點(diǎn),且∠DAE=30°,將AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到AFB,連接DF.下列結(jié)論中正確的個(gè)數(shù)有( 。

①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于 A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖象上,CDx軸,且CD=2,直線(xiàn)l是拋物線(xiàn)的對(duì)稱(chēng)軸,E是拋物線(xiàn)的頂點(diǎn).

(1)求b、c的值;

(2)如圖①,連接BE,線(xiàn)段OC上的點(diǎn)F關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)F'恰好在線(xiàn)段BE上,求點(diǎn)F的坐標(biāo);

(3)如圖②,動(dòng)點(diǎn)P在線(xiàn)段OB上,過(guò)點(diǎn)Px軸的垂線(xiàn)分別與BC交于點(diǎn)M,與拋物線(xiàn)交于點(diǎn)N.試問(wèn):拋物線(xiàn)上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線(xiàn)段NQ的長(zhǎng)度最小?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)y=ax2+bx+2x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長(zhǎng)DC交拋物線(xiàn)于點(diǎn)E.

(1)求拋物線(xiàn)的解析式;

(2)如圖2,點(diǎn)P是直線(xiàn)EO上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Py軸的平行線(xiàn)交直線(xiàn)EO于點(diǎn)G,作PHEO,垂足為H.設(shè)PH的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為m,求lm的函數(shù)關(guān)系式(不必寫(xiě)出m的取值范圍),并求出l的最大值;

(3)如果點(diǎn)N是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),拋物線(xiàn)上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)y1=ax2+bx+ca≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線(xiàn)y2=mx+nm≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(﹣1,0);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^(guò)程中,中途休息了一段時(shí)間設(shè)他從山腳出發(fā)后所用的時(shí)間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過(guò)程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3,…B1,B2,B3,…分別在直線(xiàn)y=x+bx軸上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形.如果點(diǎn)A1(1,1),那么點(diǎn)A2018的縱坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案