【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(-3,2),B(0,-2)其對稱軸為直線x= ,C(0, )y軸上一點,直線AC與拋物線交于另一點D,

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點F使ADF是直角三角形,如果存在,求出點F的坐標(biāo),如果不存在,請說明理由.

【答案】1y=x2-x-2 ;2)存在.F點坐標(biāo)為( 13,,)或(,-,,-7.

【解析】

1)根據(jù)待定系數(shù)法求解即可;

2)先利用待定系數(shù)法求出直線AC的解析式,再和拋物線的解析式聯(lián)立組成方程組求出點D的坐標(biāo),設(shè)F,m),然后根據(jù)兩點間的距離公式分別表示出AD2、AF2、DF2,再分三種情況根據(jù)勾股定理列出方程,解方程即可求得結(jié)果.

解:(1)由題意得:,解得,

∴拋物線的解析式為y=x2x2 ;

2)存在點F使ADF是直角三角形.

設(shè)直線AC的解析式為:,把A(32)、C(0,)代入,得,解得:,直線AC的解析式為:,

聯(lián)立方程組,解得:,,D坐標(biāo)為(5,-2),

設(shè)F,m),AD2=(5+3)2+(22)2=80,AF2=(+3)2+(m2)2,DF2=(5)2+(m+2)2,

當(dāng)AD2+DF2=AF2時,ADF是直角三角形,則80+(5)2+(m+2)2=(+3)2+(m2)2

解得m=7,此時F點坐標(biāo)為(,-7);

當(dāng)DF2+AF2=AD2時,ADF是直角三角形,則(5)2+(m+2)2+(+3)2+(m2)2=80,

解得m,∴F點坐標(biāo)為(,)或(,-);

當(dāng)AD2+AF2=DF2時,ADF也是直角三角形,則80+(+3)2+(m2)2=(5)2+(m+2)2,

解得:m=13,∴F點坐標(biāo)為(,13.

綜上,在拋物線的對稱軸上存在點F,使ADF是直角三角形,且F點坐標(biāo)為(,13)或(,)或(,-)或(,-7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點B,Cx軸上,反比例函數(shù)y=﹣ x0)的圖象經(jīng)過AE兩點,反比例函數(shù)yx0)的圖象經(jīng)過第一象限內(nèi)的D,H兩點,正方形EFCH的頂點FGAD上.已知A(﹣1,a),B(﹣4,0).

1)求點C的坐標(biāo)及k的值;

2)直接寫出正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點軸,垂足為.

1)求拋物線的解析式.

2)點軸正半軸上的一個動點,過點軸,交直線于點,交拋物線于點.

①若點在線段上(不與點重合),連接,求面積的最大值.

②設(shè)的長為,是否存在,使以點,,,為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超越公司將某品牌農(nóng)副產(chǎn)品運往新時代市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應(yīng)值如下表:

v(千米/小時)

75

80

85

90

95

t(小時)

4.00

3.75

3.53

3.33

3.16

1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;

2)汽車上午730從超越公司出發(fā),能否在上午1000之前到達新時代市場?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為4,點E, F分別在BC, BD上,且BE=1,過三點C E, F作⊙OCD于點G.

(1)證明∠EFG =90°.

(2)如圖2,連結(jié)AF,當(dāng)點F運動至點A,F, G三點共線時,求的面積.

(3)在點F整個運動過程中,

①當(dāng)EF, FG CG中滿足某兩條線段相等,求所有滿足條件的BF的長.

②連接EG,若時,求⊙O的半徑(請直接寫出答案) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABACAMBC邊的中線,點D在邊AC上,聯(lián)結(jié)BDAM于點F,延長BD至點E,使得,聯(lián)結(jié)CE

求證:(1)∠ECD2BAM;

2BFDFEF的比例中項.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在向貧困地區(qū)捐書活動中全體師生積極捐書.為了解所捐書籍的種類,某同學(xué)對部分書籍進行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:

1)本次抽樣調(diào)查的書籍有多少本?請通過計算補全條形統(tǒng)計圖;

2)求出圖中表示科普類書籍的扇形圓心角度數(shù);

3)本次活動師生共捐書本,請估計有多少本文學(xué)類書籍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中有2個白球、1個紅球,乙口袋中有1個白球、1個紅球,這些球除顏色外無其他差別.分別從每個口袋中隨機摸出1個球.

1)求摸出的2個球都是白球的概率.

2)請比較①摸出的2個球顏色相同②摸出的2個球中至少有1個白球,這兩種情況哪個概率大,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某翼裝飛行員從離水平地面高AC=500mA處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結(jié)果精確到1m).

查看答案和解析>>

同步練習(xí)冊答案