【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在處,BC為折痕。
(1)圖①中,若∠1=30°,求∠的度數(shù);
(2)如果又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE,如圖②所示,∠1=30°,求∠2以及∠的度數(shù);
(3)如果在圖②中改變∠1的大小,則的位置也隨之改變,那么問題(2)中∠的大小是否改變?請說明理由。
【答案】(1)120°;(2)90°.(3)結論:∠CBE不變.
【解析】試題分析:(1)先根據(jù)折疊的性質求出∠ABC的度數(shù),然后根據(jù)∠A′BD=180°-∠ABC-∠1計算即可;
(2)由∠A′BD=120°,∠2=∠DBE,可得∠2=∠A′BD=60°,根據(jù)∠CBE=∠1+∠2計算出∠CBE;
(3)由∠1+∠2=∠ABA′+∠A′BD= (∠ABA′+∠A′BD)計算即可.
試題解析:
解:(1)∵∠1=30°,
∴∠1=∠ABC=30°,
∴∠A′BD=180°-30°-30°=120°.
(2)∵∠A′BD=120°,∠2=∠DBE,
∴∠2=∠A′BD=60°,
∴∠CBE=∠1+∠2=30°+60°=90°.
(3)結論:∠CBE不變.
∵∠1=∠ABA′,∠2=∠A′BD,∠ABA′+∠A′BD=180°,
∴∠1+∠2=∠ABA′+∠A′BD
=(∠ABA′+∠A′BD)
=×180°
=90°.
即∠CBE=90°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=a,以OC為一邊作等邊△OCD,連接AD.
(1)求證:△BOC≌△ADC;
(2)當OA=OD時,求a的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖所示,選擇適當?shù)姆较驌舸虬浊,可以使白?反彈后將黑球撞入袋中,此時∠1=∠2,并且∠2 +∠3=90°。如果∠3=30°,那么∠1應等于多少度,才能保證黑球直接入袋?
(2)如圖,打臺球時,小球由A點出發(fā)撞擊到臺球桌邊CD的點O處,請用尺規(guī)作圖的方法作出小球反彈后的運動方向(不寫作法,但要保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置請完成以下步驟.
(1)請你以火車站為原點建立平面直角坐標系;
(2)寫出市場的坐標是____________;超市的坐標為____________;
(3)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將此三角形向下平移4個單位長度,畫出平移后的△A1B1C1,并求出其面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖-1,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD,BE的延長線交AD于F.
(1)猜想線段BE,AD的數(shù)量關系和位置關系:________________________(不必證明);
(2)當點E為△ABC內部一點時,使點D和點E分別在AC的兩側,其它條件不變.
① 請你在圖-2中補全圖形;
②(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人民生活水平的提高,越來越多的家庭采取分戶式采暖,降低采暖用氣價格的呼聲強烈.某市物價局對市區(qū)居民管道天然氣階梯價格制度的規(guī)定作出了調整,調整后的付款金額y(單位:元)與年用氣量(單位:m3)之間的函數(shù)關系如圖所示:
(1)宸宸家年用氣量是270m3,求付款金額.
(2)皓皓家去年的付款金額是1300元,求去年的用氣量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OC在∠BOD內.
(1)如果∠AOC和∠BOD都是直角.
①若∠BOC=60°,則∠AOD的度數(shù)是 ;
②猜想∠BOC與∠AOD的數(shù)量關系,并說明理由;
(2)如果∠AOC=∠BOD=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內,是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com