【題目】如圖,面積為8的矩形ABOC的邊OB、OC分別在x軸、y軸的正半軸上,點(diǎn)A在雙曲線y的圖象上,且AC2

1)求k值;

2)矩形BDEF,BDx軸的正半軸上,FAB上,且BDOCBFOB.雙曲線交DEM點(diǎn),交EFN點(diǎn),求MEN的面積.

【答案】(1)y;(2)

【解析】試題分析:(1)根據(jù)矩形的面積求出AB,求出A的坐標(biāo),代入反比例函數(shù)解析式求出即可;

2)先求出BFOD,代入函數(shù)解析式求出點(diǎn)的坐標(biāo),求出ENEM,根據(jù)面積公式求出即可.

試題解析:解:(1矩形ABOC的面積為8,AC=2,OC=AB=8÷2=4AC=OB=2,A點(diǎn)的坐標(biāo)為(2,4),點(diǎn)A在雙曲線的圖象上,代入得:k=8

2)由(1)知:反比例函數(shù)的解析式為,BD=OC,BF=OBOC=4,OB=2,又四邊形BDEF是矩形,BD=EF=4BF=DE=2,OD=BD+OB=6,把y=2代入得:x=4,即N點(diǎn)的坐標(biāo)為(4,2),把x=6代入得:y=,即M的坐標(biāo)為(6, ),EN=64=2,EM=2=,∴△MEN的面積為=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形

(x+p)(x+q)=x2+(p+q)x+pqx2+(p+q)x+pq=(x+p)(x+q)

利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,

例如:將式子x2+3x+2分解因式.

分析:這個(gè)式子的常數(shù)項(xiàng)2=1×2一次項(xiàng)系數(shù)3=1+2

所以x2+3x+2=x2+(1+2)x=1×2

解:x2+3x+2=(x+)(x+2)

請(qǐng)仿照上面的方法,解答下列問題:

(1)分解因式:x2+6x-27=__________________;

(2)x2+px+8可分解為兩個(gè)一次因式的積,則整數(shù)的所有可能值是_________________;

(3)利用因式分解法解方程:x2-4x-12=0..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn)、,且與直線交于點(diǎn)

(1)若是線段上的點(diǎn),且的面積為,求直線的函數(shù)表達(dá)式.

)在()的條件下,設(shè)是射線上的點(diǎn),在平面內(nèi)是否存在點(diǎn),使以、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程大位所著《算法統(tǒng)宗》是一部中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作.在《算法統(tǒng)宗》中記載:平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語歡嬉.良工高士素好奇,算出索長(zhǎng)有幾?【注釋】1=5尺.

譯文:當(dāng)秋千靜止時(shí),秋千上的踏板離地有1尺高,如將秋千的踏板往前推動(dòng)兩步(10尺)時(shí),踏板就和人一樣高,已知這個(gè)人身高是5尺.美麗的姑娘和才子們,每天都來爭(zhēng)蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長(zhǎng)是多少嗎?

如圖,假設(shè)秋千的繩索長(zhǎng)始終保持直線狀態(tài),OA是秋千的靜止?fàn)顟B(tài),A是踏板,CD是地面,點(diǎn)B是推動(dòng)兩步后踏板的位置,弧AB是踏板移動(dòng)的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設(shè)繩索長(zhǎng)OA=OB=x尺,則可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝著除顏色外完全相同的黑、白兩種小球共40個(gè),小明做摸球試驗(yàn),他將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的概率約為______;(精確到0.1)

(2)估算盒子里有白球________個(gè)

(3)若向盒子里再放入x個(gè)除顏色以外其他完全相同的球,這x個(gè)球中白球只有1個(gè),每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回,通過大量重復(fù)摸球試驗(yàn)后發(fā)現(xiàn),摸到白球的頻率穩(wěn)定在50%,請(qǐng)推測(cè)x的值最有可能是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的線段AD(除去端點(diǎn)A、D)上一動(dòng)點(diǎn),EF⊥BC于點(diǎn)F.

(1)若∠B=40°,∠DEF=10°,求∠C的度數(shù).

(2)當(dāng)E在AD上移動(dòng)時(shí),∠B、∠C、∠DEF之間存在怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y1=-x與反比例函數(shù)y2的圖象經(jīng)過A(-2,1)點(diǎn),求:

1)反比例函數(shù)的解析式.

2)正比例與反比例函數(shù)另一個(gè)交點(diǎn)B的坐標(biāo).

3)當(dāng)x在什么范圍,y1y2,當(dāng)x在什么范圍,y1y2,當(dāng)x在什么范圍,y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)與探究:

)由圖觀察易知關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,請(qǐng)?jiān)趫D中分別標(biāo)明、關(guān)于直線的對(duì)稱點(diǎn)、的位置,并寫出他們的坐標(biāo):__________、__________.

歸納與發(fā)現(xiàn):

)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為__________(不必證明).

運(yùn)用與拓廣:

)已知兩點(diǎn)、,試在直線上確定一點(diǎn),使點(diǎn)、兩點(diǎn)的距離之和最小,并求出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時(shí),記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2

C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A

查看答案和解析>>

同步練習(xí)冊(cè)答案