【題目】如圖,已知⊙O的直徑為AB,AC⊥AB于點A,BC與⊙O相交于點D,在AC上取一點E,使得ED=EA.

(1)求證:ED是⊙O的切線;
(2)當OE=10時,求BC的長.

【答案】
(1)證明:如圖,連接OD.

∵AC⊥AB,

∴∠BAC=90°,即∠OAE=90°.

在△AOE與△DOE中,

,

∴△AOE≌△DOE(SSS),

∴∠OAE=∠ODE=90°,即OD⊥ED.

又∵OD是⊙O的半徑,

∴ED是⊙O的切線;


(2)解:如上圖,∵OE=10.

∵AB是直徑,

∴∠ADB=90°,即AD⊥BC.

又∵由(1)知,△AOE≌△DOE,

∴∠AEO=∠DEO,

又∵AE=DE,

∴OE⊥AD,

∴OE∥BC,

=

∴BC=2OE=20,即BC的長是20.


【解析】(1)如圖,連接OD.通過證明△AOE≌△DOE得到∠OAE=∠ODE=90°,易證得結(jié)論;(2)利用圓周角定理和垂徑定理推知OE∥BC,所以根據(jù)平行線分線段成比例求得BC的長度即可.本題考查了切線的判定與性質(zhì).解答(2)題時,也可以根據(jù)三角形中位線定理來求線段BC的長度.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈ ,cos22° ,tan22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCD的對角線BD上的一點,且BE=BC,AB=3,BC=4,點P為直線EC上的一點,且PQBC于點Q,PRBD于點R.

(1)①如圖1,當點P為線段EC中點時,易證:PR+PQ= (不需證明).②如圖2,當點P為線段EC上的任意一點(不與點E、點C重合)時,其它條件不變,則①中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(2)如圖3,當點P為線段EC延長線上的任意一點時,其它條件不變,則PRPQ之間又具有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015南通)如圖,在ABCD中,點E,F分別在ABDC上,且EDDB,FBBD

(1)求證:AED≌△CFB;

(2)若∠A=30°,DEB=45°,求證:DA=DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計)一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校公用10分鐘.下列說法:
①公交車的速度為400米/分鐘;
②小剛從家出發(fā)5分鐘時乘上公交車;
③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;
④小剛上課遲到了1分鐘.
其中正確的個數(shù)是(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點C順時針旋轉(zhuǎn)60°,得到△DEC,則AE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形的一邊長是9cm,那么這個平行四邊形的兩條對角線的長可以是(

A. 4cm6cm B. 6cm8cm C. 8cm10cm D. 10cm12cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

同步練習冊答案