【題目】已知:如圖1,直線y= x+6與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.
(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且S△PCD=2S△PAD , 求點(diǎn)P的坐標(biāo);
(3)如圖2,另有一條直線y=﹣x與直線AC交于點(diǎn)M,N為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Q為x軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).
【答案】
(1)解:在y= x+6中,
令x=0,則y=6;令y=0,則x=﹣8,
∴A(﹣8,0),C(0,6),
∵點(diǎn)B的橫坐標(biāo)為2,
∴B(2,0),
設(shè)拋物線解析式為y=a(x+8)(x﹣2),則
把C(0,6)代入,得6=a×(﹣16),
∴a=﹣ ,
∴y=﹣ (x+8)(x﹣2),
即
(2)解:如圖所示,過(guò)P作PH⊥AO于H,
∵S△PCD=2S△PAD,
∴AP:PC=1:2,
∵PH∥CO,
∴AH:HO=1:2,
即OH= AO,
又∵AO=8,
∴OH=8× = ,
∴點(diǎn)P的橫坐標(biāo)為 ,
在直線y= x+6中,當(dāng)x= 時(shí),y= ×( )+6=2,
∴點(diǎn)P的縱坐標(biāo)為2,
∴點(diǎn)P的坐標(biāo)為( ,2)
(3)解:分兩種情況:
①當(dāng)點(diǎn)Q1為∠NMO的平分線與x軸的交點(diǎn)時(shí),點(diǎn)Q1到直線MN和直線MO的距離相等,
∵直線y=﹣x與直線y= x+6交于點(diǎn)M,
∴M(﹣ , ),
又∵A(﹣8,0),
∴由兩點(diǎn)間距離公式可得AM= = ,
∵∠AMN=∠AOM,∠MAN=∠OAM,
∴△AMN∽△AOM,
∴AM2=AN×AO,即( )2=AN×8,
∴AN= ,
∴ON=AO﹣AN= ,
即N(﹣ ,0),
∴由兩點(diǎn)間距離公式可得MN= ,MO= ,
∵M(jìn)Q1平分∠NMO,
∴ = = ,
∴OQ1= NO= = ,
即點(diǎn)Q1的坐標(biāo)為( ,0);
②當(dāng)點(diǎn)Q2為∠NMO的鄰補(bǔ)角的平分線與x軸的交點(diǎn)時(shí),點(diǎn)Q2到直線MN和直線MO的距離相等,
根據(jù)Q1( ,0),M(﹣ , ),可得
直線MQ1解析式為y=﹣3x﹣ ,
∵M(jìn)Q1⊥MQ2,
∴可設(shè)直線MQ2解析式為y= x+b,
把M(﹣ , )代入,可得b= ,
∴直線MQ2解析式為y= x+ ,
∴當(dāng)y=0時(shí),0= x+ ,
解得x=﹣ ,
即點(diǎn)Q2的坐標(biāo)為( ,0).
綜上所述,點(diǎn)Q的坐標(biāo)為( ,0)或( ,0)
【解析】(1)根據(jù)直線y= x+6,可得A(﹣8,0),C(0,6),設(shè)拋物線解析式為y=a(x+8)(x﹣2),把C(0,6)代入,可得拋物線的函數(shù)關(guān)系式;(2)過(guò)P作PH⊥AO于H,根據(jù)S△PCD=2S△PAD , 可得AP:PC=1:2,即AH:HO=1:2,進(jìn)而得到OH= AO=8× = ,在直線y= x+6中,當(dāng)x= 時(shí),y= ×( )+6=2,可得點(diǎn)P的坐標(biāo)為( ,2);(3)分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)Q1為∠NMO的平分線與x軸的交點(diǎn)時(shí),點(diǎn)Q1到直線MN和直線MO的距離相等;②當(dāng)點(diǎn)Q2為∠NMO的鄰補(bǔ)角的平分線與x軸的交點(diǎn)時(shí),點(diǎn)Q2到直線MN和直線MO的距離相等,根據(jù)相似三角形的性質(zhì)求得N(﹣ ,0),再根據(jù)角平分線的性質(zhì)可得點(diǎn)Q1的坐標(biāo)為( ,0);最后根據(jù)MQ1⊥MQ2 , 可得直線MQ2解析式為y= x+ ,進(jìn)而得到點(diǎn)Q2的坐標(biāo)為( ,0).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用角平分線的性質(zhì)定理和相似三角形的判定與性質(zhì),掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活經(jīng)驗(yàn)表明,靠墻擺放的梯子,當(dāng)50°≤α≤70°時(shí)(α為梯子與地面所成的角),能夠使人安全攀爬.現(xiàn)在有一長(zhǎng)為6米的梯子AB,試求能夠使人安全攀爬時(shí),梯子的頂端能達(dá)到的最大高度AC.
(結(jié)果保留兩個(gè)有效數(shù)字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察發(fā)現(xiàn)
,,,……,.
=1﹣=.
=1﹣=.
= .
(2)構(gòu)建模型
= .(n為正整數(shù))
(3)拓展應(yīng)用:
①= .
②= .
③一個(gè)數(shù)的八分之一,二十四分之一,四十八分之一,八十分之一的和比這個(gè)數(shù)的四分之一小1,求這個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從A地到B地的公路需經(jīng)過(guò)C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長(zhǎng);
(2)問(wèn)公路改直后比原來(lái)縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD,(點(diǎn)D在⊙O外)AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若DC、AB的延長(zhǎng)線相交于點(diǎn)E,且DE=12,AD=9,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,計(jì)算正確的是( )
A.a3?a4=a12
B. =
C.(a+2)2=a2+4
D.(﹣xy)3?(﹣xy)﹣2=xy
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D,E,過(guò)劣弧 (不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線MN與AB,BC分別交于點(diǎn)M,N,若⊙O的半徑為r,則Rt△MBN的周長(zhǎng)為( )
A.r
B. ?r
C.2r
D. ?r
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)作底角∠ABC的平分線BD,交AC于點(diǎn)D(用尺規(guī)作圖,不寫(xiě)作法,但保留作圖痕跡,然后用墨水筆加墨);
(2)通過(guò)計(jì)算說(shuō)明△ABD和△BDC都是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點(diǎn).
(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說(shuō)明理由;
(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com