【題目】如圖,在△ABC中,∠C=90°,BC=AC,D是AC上一點(diǎn),AE⊥BD交BD的延長線于E,AE=BD,且DF⊥AB于F,求證:CD=DF
【答案】見解析
【解析】
延長AE、BC交于點(diǎn)F.根據(jù)同角的余角相等,得∠DBC=∠FAC;由ASA證明△BCD≌△ACF,得出AF=BD,AE=AF,由線段垂直平分線的性質(zhì)得到AB=BF,再根據(jù)等腰三角形的三線合一得出BD是∠ABC的角平分線,由角平分線的性質(zhì)定理即可得出結(jié)論.
證明:延長AE、BC交于點(diǎn)F. 如圖所示:
∵AE⊥BE,
∴∠BEA=90°,
又∠ACF=∠ACB=90°,
∴∠DBC+∠AFC=∠FAC+∠AFC=90°,
∴∠DBC=∠FAC,
在△ACF和△BCD中,
,
∴△ACF≌△BCD(ASA),
∴AF=BD.
又AE=BD,
∴AE=AF,即點(diǎn)E是AF的中點(diǎn),
∴AB=BF,
∴BD是∠ABC的角平分線,
∵∠C=90°,DF⊥AB于F,
∴CD=DF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①位置時,求證:DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②位置時,試問:DE,AD,BE有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明.
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③位置時,DE,AD,BE之間的等量關(guān)系是 (直接寫出答案,不需證明.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形ABCD中,AB=3,BC=4,動點(diǎn)P從點(diǎn)A開始按A→B→C→D的方向運(yùn)動到點(diǎn)D.如圖,設(shè)動點(diǎn)P所經(jīng)過的路程為x,△APD的面積為y.(當(dāng)點(diǎn)P與點(diǎn)A或D重合時,y=0)
(1)寫出y與x之間的函數(shù)解析式;
(2)畫出此函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=7.5,AC=9,S△ABC=.動點(diǎn)P從A點(diǎn)出發(fā),沿AB方向以每秒5個單位長度的速度向B點(diǎn)勻速運(yùn)動,動點(diǎn)Q從C點(diǎn)同時出發(fā),以相同的速度沿CA方向向A點(diǎn)勻速運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,P、Q兩點(diǎn)同時停止運(yùn)動,以PQ為邊作正△PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正△QCN,設(shè)點(diǎn)P運(yùn)動時間為t秒.
(1)求cosA的值;
(2)當(dāng)△PQM與△QCN的面積滿足S△PQM=S△QCN時,求t的值;
(3)當(dāng)t為何值時,△PQM的某個頂點(diǎn)(Q點(diǎn)除外)落在△QCN的邊上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),將△BCE沿BE折疊后得到△BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長交AD于點(diǎn)G.若,則=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價(jià)為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價(jià)定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對生活飲用水質(zhì)量要求也越來越高,更多的居民選擇購買家用凈水器.一商家抓住商機(jī),從生產(chǎn)廠家購進(jìn)了,兩種型號家用凈水器.已知購進(jìn)2臺型號家用凈水器比1臺型號家用凈水器多用200元;購進(jìn)3臺型號凈水器和2臺型號家用凈水器共用6600元
(1)求,兩種型號家用凈水器每臺進(jìn)價(jià)各為多少元?
(2)該商家用不超過26400元共購進(jìn),兩種型號家用凈水器20臺,再將購進(jìn)的兩種型號家用凈水器分別加價(jià)后出售,若兩種型號家用凈水器全部售出后毛利潤不低于12000元,求商家購進(jìn),兩種型號家用凈水器各多少臺?(注:毛利潤售價(jià)進(jìn)價(jià))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com