【題目】如圖,AB∥CD,點(diǎn)E是直線AB上的點(diǎn),過點(diǎn)E的直線l交直線CD于點(diǎn)F,EG平分∠BEF交CD于點(diǎn)G.在直線l繞點(diǎn)E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
【答案】C
【解析】
根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BEG,根據(jù)角平分線的定義得到∠BEF,根據(jù)鄰補(bǔ)角互補(bǔ)求出∠2即可求解.
解:A、∵AB∥CD,
∴∠BEG=∠1=30°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=60°.
∴∠2=180°﹣∠BEF=120°,不符合題意;
B、∵AB∥CD,
∴∠BEG=∠1=56°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=112°.
∴∠2=180°﹣∠BEF=68°,不符合題意;
C、∵AB∥CD,
∴∠BEG=∠1=70°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=140°.
∴∠2=180°﹣∠BEF=40°,符合題意;
D、∵AB∥CD,
∴∠BEG=∠1=100°,
∵EG平分∠BEF,
∴∠BEF=2∠BEG=200°.
∴∠2=360°﹣∠BEF=160°,不符合題意.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,對角線、相交于點(diǎn),,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以支向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為(單位:)(),以點(diǎn)為圓心,長為半徑的⊙M與射線、線段分別交于點(diǎn)、,連接.
(1)求的長(用含有的代數(shù)式表示),并求出的取值范圍;
(2)當(dāng)為何值時(shí),線段與⊙M相切?
(3)若⊙M與線段只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,等邊△ABC,點(diǎn) E 在 BA 的延長線上,點(diǎn) D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°至△ACF(點(diǎn) B、E 的對應(yīng)點(diǎn)分別為點(diǎn) A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,為的中點(diǎn),是邊上一動(dòng)點(diǎn),連接.若設(shè) (當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為),.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整.
通過取點(diǎn)、畫圖、計(jì)算,得到了與的幾組值,如下表:
說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).
(參考數(shù)據(jù):) .
如圖2,描出剩余的點(diǎn),并用光滑的曲線畫出該函數(shù)的圖象.
觀察圖象,下列結(jié)論正確的有 _ .
①函數(shù)有最小值,沒有最大值
②函數(shù)有最小值,也有最大值
③當(dāng)時(shí),隨著的增大而增大
④當(dāng)時(shí),隨著的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,過點(diǎn)B作PB⊥OB,連接AP交半圓O于點(diǎn)C,D為BP上一點(diǎn),CD是半圓O的切線.
(1)求證:CD=DP.
(2)已知半圓O的直徑為,PC=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的兩條弦,相交于點(diǎn),且.
(1)如圖1,連接,求證:.
(2)如圖2,在,在上取一點(diǎn),使得,交于點(diǎn),連接.
①判斷與是否相等,并說明理由.
②若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E為對角線AC上一點(diǎn),EF⊥DE交AB于F,若四邊形AFED的面積為4,則四邊形AFED的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,點(diǎn)為邊上一點(diǎn),,點(diǎn)為的中點(diǎn),過點(diǎn)作直線分別與,相交于點(diǎn),.若,則長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,動(dòng)點(diǎn)P從C出發(fā)沿CA方向,以每秒1個(gè)單位長度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原來速度沿AC返回;同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t為何值時(shí),PQ∥CB?
(2)在點(diǎn)P從C向A運(yùn)動(dòng)的過程中,在CB上是否存在點(diǎn)E使△CEP與△PQA全等?若存在,求出CE的長;若不存在,請說明理由;
(3)伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB﹣BC﹣CP于點(diǎn)F.當(dāng)DF經(jīng)過點(diǎn)C時(shí),求出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com