【題目】某中學廣場上有旗桿,在學習解直角三角形以后,數(shù)學興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

【答案】解:如圖作CM∥AB交AD于M,MN⊥AB于N.
由題意 = ,即 = ,CM=
在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,
∴tan72°= ,
∴AN≈12.3,
∵MN∥BC,AB∥CM,
∴四邊形MNBC是平行四邊形,
∴BN=CM= ,
∴AB=AN+BN=13.8米.
【解析】如圖作CM∥AB交AD于M,MN⊥AB于N,根據(jù) = ,求出CM,在RT△AMN中利用tan72°= ,求出AN即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某書商去圖書批發(fā)市場購買某本書,第一次用12000元購書若干本,并把該書按定價7/本出售,很快售完,由于該書暢銷,書商又去批發(fā)市場采購該書,第二次購書時,每本書批發(fā)價已比第一次提高了20%,他用15000元所購書數(shù)量比第一次多了100.

1)求第一次購書的進價是多少元一本?第二次購進多少本書?

2)若第二次購進書后,仍按原定價7/本售出2000本時,出現(xiàn)滯銷,書商便以定價的n折售完剩余的書,結果第二次共盈利100m元(nm為正整數(shù)),求相應的n、m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知經過原點的拋物線y﹣ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結論中:①ab>0,②a+b+c>0,③當﹣2<x<0時,y<0,正確的結論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點OEFBC分別交ABACE、F.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點DBC邊上,點EAC的延長線上,DEDA

(1)求證:∠BAD=∠EDC;

(2)作出點E關于直線BC的對稱點M,連接DM、AM,猜想DMAM的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等腰三角形,AC=BC,△BDC△ACE分別為等邊三角形,直線AEBD相交于點F,連接CF,交AB于點G.

(1)若∠ACB=150°,求∠AFB的度數(shù)

(2)求證:AG=BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖形填空:

(1)若直線ED,BC被直線AB所截,則∠1__________是同位角.

(2)若直線ED,BC被直線AF所截,則∠3__________是內錯角.

(3)1和∠3是直線AB,AF被直線__________所截構成的__________.

(4)2和∠4是直線__________,__________被直線BC所截構成的__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示ABDE,ACDF,AC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1) ×(﹣1)2﹣|﹣2|+( 1;
(2)解不等式組:

查看答案和解析>>

同步練習冊答案