【題目】已知在平面直角坐標(biāo)系中,拋物線與軸交于點A、B(點A在點B的左側(cè)),且AB=6.
(1)求這條拋物線的對稱軸及表達(dá)式;
(2)在y軸上取點E(0,2),點F為第一象限內(nèi)拋物線上一點,聯(lián)結(jié)BF、EF,如果,求點F的坐標(biāo);
(3)在第(2)小題的條件下,點F在拋物線對稱軸右側(cè),點P在軸上且在點B左側(cè),如果直線PF與y軸的夾角等于∠EBF,求點P的坐標(biāo).
【答案】(1),對稱軸;(2)或;(3)
【解析】
(1)先將拋物線表達(dá)式化為頂點式,得出對稱軸x=1,再根據(jù)拋物線與x軸兩交點的距離為6,可以得出A,B兩點的坐標(biāo),進(jìn)而可求出解析式.
(2)利用S四邊形OEFB=S△OEF+S△OBF列方程求解.
(3)找出兩等角所在的三角形,構(gòu)造一組相似三角形求解.
解:(1)將化為一般式得,
,
∴這條拋物線的對稱軸為x=1.
又拋物線與軸交于點A、B(點A在點B的左側(cè)),且AB=6,
∴根據(jù)對稱性可得A,B兩點的坐標(biāo)分別為A(-2,0),B(4,0).
將A點坐標(biāo)代入解析式,可解得m=,
∴所求拋物線的解析式為.
(2)設(shè)點F的坐標(biāo)為(t, t2+t+4),如圖1可知
S四邊形OEFB=S△OEF+S△OBF
=×2×t+×4×(t2+t+4)=10,
解得,t=1或t=2,
∴點F的坐標(biāo)為或.
(3)假設(shè)直線PF與y軸交于點H,拋物線與y軸交于點C,連接CF,
則根據(jù)題意得∠FHC=∠EBF,
由(2)得點F的坐標(biāo)為(2,4),又點C坐標(biāo)為(0,4),
∴CF∥x軸,
過點F作FG⊥BE于點G,
有△CFH∽△GFB.
在△BEF中,根據(jù)已知點坐標(biāo)可以求得BE=BF=2,EF=2,
根據(jù)面積法可求得FG=,∴BG=
設(shè)直線FP的解釋式為y=kx+b,則OH=b,
∴CH=4-b,
∴
∴解得b=.
將點F的坐標(biāo)(2,4)代入FP的解析式可得,k=,
即FP的解析式為y=x+,
令y=0,可得P點坐標(biāo)為(-1,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與反比例函數(shù)的圖象交于點A已知點,點C是反比例函數(shù)的圖象上的一個動點過點C作x軸的垂線,交直線AB于點D.
(1)求k的值.
(2)若,求的面積.
(3)在點C運動的過程中,是否存在點C,使?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的兩條邊AB=1,AD=,以B為旋轉(zhuǎn)中心,將對角線BD順時針旋轉(zhuǎn)60°得到線段BE,再以C為圓心將線段CD順時針旋轉(zhuǎn)90°得到線段CF,連接EF,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線中,函數(shù)值y與自變量之間的部分對應(yīng)關(guān)系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求該拋物線的表達(dá)式;
(2)如果將該拋物線平移,使它的頂點移到點M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達(dá)距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.
求C、D兩點的距離;
捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達(dá)時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平行四邊形ABCD中,AB︰BC=3︰2.
(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點E,取線段BE的中點F,連接DF交CE于點G.
(2)設(shè),那么向量=______.(用向量、表示),并在圖中畫出向量在向量和方向上的分向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時,使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1.分析下列5個結(jié)論:①2c<3b;②若0<x<3,則ax2+bx+c>0;③;④(k為實數(shù));⑤(m為實數(shù)).其中正確的結(jié)論個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com