【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關系時,使得成立?并證明你的結論.
【答案】(1)詳見解析;(2)當∠B+∠EGC=180°時,成立,理由詳見解析.
【解析】
(1)根據矩形的性質可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可證得△ADE∽△DCF,從而證得結論;
(2)在AD的延長線上取點M,使CM=CF,則∠CMF=∠CFM.根據平行線的性質可得∠A=∠CDM,再結合∠B+∠EGC=180°,可得∠AED=∠FCB,進而得出∠CMF=∠AED即可證得△ADE∽△DCM,從而證得結論;
解:(1)∵四邊形ABCD是矩形,∴∠A=∠ADC=90°,
∵DE⊥CF,∴∠ADE=∠DCF,
∴△ADE∽△DCF,
∴
(2)當∠B+∠EGC=180°時,成立,證明如下:
在AD的延長線上取點M,使CM=CF,
則∠CMF=∠CFM.
∵AB∥CD.∴∠A=∠CDM.
∵AD∥BC,∴∠CFM=∠FCB.
∵∠B+∠EGC=180°,∴∠AED=∠FCB,
∴∠CMF=∠AED,∴△ADE∽△DCM,∴,即.
科目:初中數學 來源: 題型:
【題目】如圖,把兩個全等的矩形和矩形拼成如圖所示的圖案,連接交于點,將繞點逆時針旋轉,點的運動軌跡交于點,若,有以下四個結論:①;②;③;④陰影部分的面積為.其中一定成立的是______.(把所有正確結論的序號填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系中,拋物線與軸交于點A、B(點A在點B的左側),且AB=6.
(1)求這條拋物線的對稱軸及表達式;
(2)在y軸上取點E(0,2),點F為第一象限內拋物線上一點,聯結BF、EF,如果,求點F的坐標;
(3)在第(2)小題的條件下,點F在拋物線對稱軸右側,點P在軸上且在點B左側,如果直線PF與y軸的夾角等于∠EBF,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(點A、B分別在直線CD的左右兩側),射線CD交邊AB于點E,點G是Rt△ABC的重心,射線CG交邊AB于點F,AD=x,CE=y.
(1)求證:∠DAB=∠DCF.
(2)當點E在邊CD上時,求y關于x的函數關系式,并寫出x的取值范圍.
(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應數量的條形統(tǒng)計圖,根據統(tǒng)計圖回答下列問題:
(1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數量,并補全統(tǒng)計圖(如圖所示).
(2)若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張(所有車票的形狀、大小、質地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?
(3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:“每人從不透明袋子中摸出分別標有1、2、3、4的四個球中摸出一球(球除數字不同外完全相同),并放回讓另一人摸,若小王摸得的數字比小李的小,車票給小王,否則給小李.”試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為積極響應新舊動能轉換.提高公司經濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經過市場調研發(fā)現,每臺售價為40萬元時,年銷售量為600臺;每臺售價為45萬元時,年銷售量為550臺.假定該設備的年銷售量y(單位:臺)和銷售單價(單位:萬元)成一次函數關系.
(1)求年銷售量與銷售單價的函數關系式;
(2)根據相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,B點坐標為(1,1).
(1)求直線AB和拋物線的函數關系式;
(2)在拋物線上是否存在一點D,使得S△OAD=S△OBC?若不存在,請說明理由;若存在,請求出點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
請結合圖表完成下列各題:
(1)①表中a的值為 ,中位數在第 組;
②頻數分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
組別 | 成績x分 | 頻數(人數) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com