精英家教網 > 初中數學 > 題目詳情

【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DECF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DECF,求證: ;

(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關系時,使得成立?并證明你的結論.

【答案】1)詳見解析;(2)當∠B+∠EGC180°時,成立,理由詳見解析.

【解析】

(1)根據矩形的性質可得∠A=∠ADC90°,由DECF可得∠ADE=∠DCF,即可證得ADE∽△DCF,從而證得結論;

(2)AD的延長線上取點M,使CMCF,則∠CMF=∠CFM.根據平行線的性質可得∠A=∠CDM,再結合∠B+EGC180°,可得∠AED=∠FCB,進而得出∠CMF=∠AED即可證得ADE∽△DCM,從而證得結論;

解:(1)∵四邊形ABCD是矩形,∴∠A=∠ADC90°,

DECF,∴∠ADE=∠DCF

∴△ADE∽△DCF,

 

(2)當∠B+∠EGC180°時,成立,證明如下:

AD的延長線上取點M,使CMCF

則∠CMF=∠CFM.

ABCD.∴∠A=∠CDM.

ADBC,∴∠CFM=∠FCB.

∵∠B+∠EGC180°,∴∠AED=∠FCB

∴∠CMF=∠AED,∴△ADE∽△DCM,∴,即.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,把兩個全等的矩形和矩形拼成如圖所示的圖案,連接于點,將繞點逆時針旋轉,點的運動軌跡交于點,若,有以下四個結論:①;②;③;④陰影部分的面積為.其中一定成立的是______.(把所有正確結論的序號填在橫線上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在平面直角坐標系中,拋物線軸交于點A、B(點A在點B的左側),且AB=6.

1)求這條拋物線的對稱軸及表達式;

2)在y軸上取點E0,2),點F為第一象限內拋物線上一點,聯結BFEF,如果,求點F的坐標;

3)在第(2)小題的條件下,點F在拋物線對稱軸右側,點P軸上且在點B左側,如果直線PFy軸的夾角等于∠EBF,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在RtABCRtACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2(A、B分別在直線CD的左右兩側),射線CD交邊AB于點E,點GRtABC的重心,射線CG交邊AB于點FAD=x,CE=y.

(1)求證:∠DAB=DCF.

(2)當點E在邊CD上時,求y關于x的函數關系式,并寫出x的取值范圍.

(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,E,F分別在邊ADCD上,AFBE相交于點G,若AE=3ED,DF=CF,則的值是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五一假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應數量的條形統(tǒng)計圖,根據統(tǒng)計圖回答下列問題:

1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數量,并補全統(tǒng)計圖(如圖所示).

2)若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張(所有車票的形狀、大小、質地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?

3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:每人從不透明袋子中摸出分別標有12、3、4的四個球中摸出一球(球除數字不同外完全相同),并放回讓另一人摸,若小王摸得的數字比小李的小,車票給小王,否則給小李.試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為積極響應新舊動能轉換.提高公司經濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經過市場調研發(fā)現,每臺售價為40萬元時,年銷售量為600;每臺售價為45萬元時,年銷售量為550.假定該設備的年銷售量y(單位:)和銷售單價(單位:萬元)成一次函數關系.

(1)求年銷售量與銷售單價的函數關系式;

(2)根據相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABx軸上的點A20),且與拋物線yax2相交于B、C兩點,B點坐標為(11).

1)求直線AB和拋物線的函數關系式;

2)在拋物線上是否存在一點D,使得SOADSOBC?若不存在,請說明理由;若存在,請求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:

請結合圖表完成下列各題:

(1)①表中a的值為 ,中位數在第 組;

頻數分布直方圖補充完整;

(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.

組別

成績x分

頻數(人數)

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

查看答案和解析>>

同步練習冊答案