【題目】如圖,在平面直角坐標系中,直線是第一、三象限的角平分線.
(1)由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出他們的坐標:___________、___________;
(2)結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點關(guān)于第一、三象限的角平分線的對稱點的坐標為___________(不必證明);
(3)已知兩點、,試在直線L上畫出點Q,使點Q到D、E兩點的距離之和最小,求QD+QE的最小值.
【答案】(1),.(2)(3)
【解析】
(1)根據(jù)對稱軸為第一、三象限的角平分線,結(jié)合圖形得出B′、C′兩點坐標;
(2)由(1)的結(jié)論,并與B、C兩點坐標進行比較,得出一般規(guī)律;
(3)由軸對稱性作出滿足條件的Q點,結(jié)合勾股定理,得出結(jié)論.
(1)如圖,由點關(guān)于直線y=x軸對稱可知:B'(3,5),C'(5,-2).
故答案為:(3,5),(5,-2);
(2)由(1)的結(jié)果可知,
坐標平面內(nèi)任一點P(a,b)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標為 (b,a).
故答案為:(b,a);
(3)由(2)得,D(1,-3)關(guān)于直線l的對稱點D'的坐標為(-3,1),連接D'E交直線l于點Q,此時點Q到D、E兩點的距離之和最小,D'E==,
∴QD+QE的最小值為:.
科目:初中數(shù)學 來源: 題型:
【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月按30天計算,這款商品將開展“每天降價1元”的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(發(fā)現(xiàn))
如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①).
如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的圓上嗎?請證明點D也不在⊙O內(nèi).
(應用)
利用(發(fā)現(xiàn))和(思考)中的結(jié)論解決問題:
(1)如圖④,已知∠BCD=∠BAD,∠CAD=40°,求∠CBD的度數(shù).
(2)如圖⑤,若四邊形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延長線于F,點E在AB上,∠AED=∠ADF,CD=3,EC=2,求ED的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校準備組織290名師生進行野外考察活動,行李共有100件,學校計劃租用甲、乙兩種型號的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人(不含司機)和10件行李,乙種汽車每輛最多能載30人(不含司機)和20件行李設租用甲種汽車x輛,請你幫助學校設計所有可能的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知坐標平面內(nèi)的點A(3,2),B(1,3),C(﹣1,﹣6),D(2a,4a﹣4)中只有一點不在直線l上,則這一點是( 。
A.點AB.點BC.點CD.點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1:已知直線與軸,軸分別交于,兩點,以為直角頂點在第一象限內(nèi)做等腰Rt△.
(1)求,兩點的坐標;
(2)求所在直線的函數(shù)關(guān)系式;
(3)如圖2,直線交軸于點,在直線上存在一點,使是△的中線,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,原點O和△ABC的頂點均為格點.
(1)以O為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)
(2)若點C的坐標為(2,4),則點A′的坐標為( , ),點C′的坐標為( , ),S△A′B′C′:S△ABC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…和B1,B2,B3,…分別在直線y=x+和x軸上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么點A3的縱坐標是( 。
A. B. 2cm C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國高鐵近年來用震驚世界的速度不斷發(fā)展,已成為當代中國一張耀眼的“國家名片”。修建高鐵時常常要逢山開道、遇水搭橋。如圖,某高鐵在修建時需打通一直線隧道MN(M、N為山的兩側(cè)),工程人員為了計算MN兩點之間的直線距離,選擇了在測量點A、B、C進行測量,點B、C分別在AM、AN上,現(xiàn)測得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直線隧道MN的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com