【題目】如圖,是邊長(zhǎng)為12的等邊三角形,點(diǎn)是邊上一動(dòng)點(diǎn),由點(diǎn)向點(diǎn)運(yùn)動(dòng)(與、不重合),點(diǎn)是延長(zhǎng)線上一點(diǎn),與點(diǎn)同時(shí)以相同的速度由點(diǎn)向延長(zhǎng)線方向運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn)作于,連接交于點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng);
(2)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)是線段的中點(diǎn);
(3)點(diǎn),點(diǎn)運(yùn)動(dòng)過(guò)程中線段的長(zhǎng)是否為定值?如果線段的長(zhǎng)為定值,求出線段的長(zhǎng);如果線段的長(zhǎng)不為定值,請(qǐng)說(shuō)明理由.
【答案】(1);(2)見解析;(3)線段的長(zhǎng)為定值,
【解析】
(1)設(shè),則,先根據(jù)等邊三角形的性質(zhì)和可得,再根據(jù)直角三角形的性質(zhì)求解即可;
(2)如圖(見解析),過(guò)點(diǎn)作,交于點(diǎn),先根據(jù)平行線的性質(zhì)得出,再根據(jù)等邊三角形的判定與性質(zhì)得出,從而可得,然后根據(jù)三角形全等的判定定理與性質(zhì)即可得證;
(3)先根據(jù)題(2)可知,再根據(jù)線段的和差、即可得出答案.
(1)設(shè),則
∵是等邊三角形
∴
∵,
∴
則在中,
即
解得
故AM的長(zhǎng)為4;
(2)如圖,過(guò)點(diǎn)作,交于點(diǎn)
∴
∴是等邊三角形
∴
∴
在和中,
∴
∴
即在運(yùn)動(dòng)過(guò)程中,點(diǎn)是線段的中點(diǎn);
(3)線段的長(zhǎng)為定值.求解過(guò)程如下:
由(2)知,是等邊三角形
∵
∴
由(2)的結(jié)論可知:
∴
又∵
∴
故線段的長(zhǎng)為定值6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,且,,點(diǎn)以每秒的速度從點(diǎn)開始沿射線運(yùn)動(dòng),同時(shí)點(diǎn)在線段上由點(diǎn)向終點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)時(shí),________,__________.
(2)如圖①,當(dāng)點(diǎn)與點(diǎn)經(jīng)過(guò)幾秒時(shí),使得與全等?此時(shí),點(diǎn)的速度是多少?(寫出求解過(guò)程)
(3)如圖②,是否存在點(diǎn),使得是等腰三角形?若存在,請(qǐng)直接寫出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用若干個(gè)小立方塊搭成一個(gè)幾何體,使它從正面看與從左面看都是如圖的同一個(gè)圖.通過(guò)實(shí)際操作,并與同學(xué)們討論,解決下列問(wèn)題:
(1)所需要的小立方塊的個(gè)數(shù)是多少?你能找出幾種?
(2)畫出所需個(gè)數(shù)最少和所需個(gè)數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0),B(2,-3),C(4,-2).
(1)在圖中作出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1.
(2)作出△A1B1C1向左平移4個(gè)單位長(zhǎng)度后得到的△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo)_____.
(3)△A2B2C2的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,連接EF交AP于點(diǎn)G.給出以下四個(gè)結(jié)論,其中正確的結(jié)論是_____.
①AE=CF,
②AP=EF,
③△EPF是等腰直角三角形,
④四邊形AEPF的面積是△ABC面積的一半.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角△ABC,AB⊥BC,AB=BC,點(diǎn)C在第一象限.已知點(diǎn)A(m,0),B(0,n)(n>m>0),點(diǎn)P在線段OB上,且OP=OA.
(1)點(diǎn)C的坐標(biāo)為 (用含m,n的式子表示)
(2)求證:CP⊥AP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DE⊥BC,DE與AC的延長(zhǎng)線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與⊙O交于點(diǎn)G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)點(diǎn)點(diǎn)同學(xué)通過(guò)畫圖和測(cè)量得到以下近似數(shù)據(jù):
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是中線,過(guò)點(diǎn)作的平行線交的延長(zhǎng)線于點(diǎn).
(1)求證:為等腰三角形;
(2)延長(zhǎng)至點(diǎn),使,連接,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com