【題目】已知:如圖,在正方形ABCD外取一點E,連接AE,BE,DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結論的序號是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①③④
【答案】A
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;
②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質,易得∠BEP=90°,即可證;
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可.
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
∴△APD≌△AEB(SAS);
故此選項成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此選項成立;
②過B作BF⊥AE,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE= ,
∴BF=EF= ,
故此選項正確;
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP= ,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,
∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.
故此選項不正確.
綜上可知其中正確結論的序號是①②③,
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:
設(其中、、、均為整數(shù)),則有.
,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當、、、均為正整數(shù)時,若,用含、的式子分別表示、,得: , ;
(2)利用所探索的結論,找一組正整數(shù)、、、填空: ;
(3)若,且、、均為正整數(shù),求的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為12cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘1cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘2cm的速度移動.若P、Q分別從A、B同時出發(fā),其中任意一點到達目的地后,兩點同時停止運動,求:
(1)經(jīng)過6秒后,BP= cm,BQ= cm;
(2)經(jīng)過幾秒后,△BPQ是直角三角形?
(3)經(jīng)過幾秒△BPQ的面積等于cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點D,點O是AB上一點,⊙O過B、D兩點,且分別交AB,BC于點E,F(xiàn).
(1)求證:AC是⊙O的切線;
(2)已知AB=5,AC=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某油箱容量為60L的汽車,加滿汽油后行駛了100km時,油箱中的汽油大約消耗了,如果加滿汽油后汽車行駛的路程為x(km),油箱中剩油量為y(L),則y與x之間的函數(shù)解析式和自變量取值范圍分別是( )
A. y=0.12x,x>0
B. y=60-0.12x,x>0
C. y=0.12x,0≤x≤500
D. y=60-0.12x,0≤x≤500
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗的家和學校在一條筆直的馬路旁,某天小麗沿著這條馬路去上學,她先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學校(在整個過程中小麗步行的速度不變),圖中的折線ABCDE表示小麗和學校之間的距離y(米)與她離家的時間x(分)之間的函數(shù)關系.
(1)求小麗步行的速度及學校與公交站臺乙之間的距離;
(2)當8≤x≤15時,求y與x之間的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使得點A移至圖中的點A'的位置.
(1)平移后所得△ABC的頂點B的坐標為 ,C的坐標為 ;
(2)平移過程中△ABC掃過的面積為 ;
(3)將直線AB以每秒1個單位長度的速度向右平移,則平移 秒時該直線恰好經(jīng)過點C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P1、P2(P2在P1的右側)是y= (k>0)在第一象限上的兩點,點A1的坐標為(2,0).
(1)填空:當點P1的橫坐標逐漸增大時,△P1OA1的面積將(減小、不變、增大)
(2)若△P1OA1與△P2A1A2均為等邊三角形,
①求反比例函數(shù)的解析式;
②求出點P2的坐標,并根據(jù)圖象直接寫在第一象限內,當x滿足什么條件時,經(jīng)過點P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com