【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=1,求△ABC的周長.
【答案】(1)證明見解析;(2)△ABC的周長為12.
【解析】試題分析:(1)利用等腰三角形的兩個(gè)底角相等、全等三角形的判定定理ASA證得△BED≌△CFD;
(2)首先證得△ABC為等邊三角形,然后由等邊三角形的性質(zhì)、直角△BED中“30°角所對(duì)的直角邊是斜邊的一半”求得BD=2BE,則△ABC的周長=3BC.
(1)證明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵D是BC的中點(diǎn),∴BD=CD∴△BED≌△CFD(AAS).
(2)解:∵AB=AC,∠A=60°,∴△ABC是等邊三角形,∴AB=BC=CA,∠B=60°.又∵DE⊥AB,∴∠EDB=30°,∴BD=2BE=2,∴BC=2BD=4,∴△ABC的周長為AB+BC+CD=3BC=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只跳蚤在一數(shù)軸上從原點(diǎn)開始,第1次向右跳1個(gè)單位長度,緊接著第2次向左跳2個(gè)單位長度,第3次向右跳3個(gè)單位長度,第4次向左跳4個(gè)單位長度,…,依此規(guī)律跳下去,當(dāng)它跳第100次落下時(shí),所在位置表示的數(shù)是( )
A. 50 B. -50 C. 100 D. -100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了數(shù)據(jù)的收集、整理與描述后,為媽媽整理記錄了10月份的家庭支出情況,并繪制成如下尚不完整的統(tǒng)計(jì)圖表,請(qǐng)你根據(jù)圖表信息完成下列各題:
項(xiàng)目 | 物業(yè)費(fèi) | 伙食費(fèi) | 服裝費(fèi) | 其他費(fèi) |
金額/元 | 800 | 400 |
(1)10月份小明家共支出多少元?
(2)在扇形統(tǒng)計(jì)圖中,表示“其他費(fèi)”的扇形圓心角為多少度?
(3)請(qǐng)將表格補(bǔ)充完整;
項(xiàng)目 | 物業(yè)費(fèi) | 伙食費(fèi) | 服裝費(fèi) | 其他費(fèi) |
金額/元 | 800 | 400 |
(4)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模型與應(yīng)用.
(模型)
(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.
(應(yīng)用)
(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為 .
如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為 .
(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1 O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.
在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示.設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張長為a寬為b的鐵板(a>b),從四個(gè)角截去四個(gè)邊長為x的小正方形 ,做成一個(gè)無蓋的盒子,用代數(shù)式表示:
(1)無蓋盒子的外表面積;(用兩種方法)
(2)無蓋盒子的容積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點(diǎn)B為圓心的扇形與邊CD相切于點(diǎn)E,扇形的圓心角為60°,點(diǎn)E是CD的中點(diǎn),圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,我們知道可以用圖形的面積來解釋一些代數(shù)恒等式,如圖可以解釋完全平方公式:.
()如圖(圖中各小長方形大小均相等),請(qǐng)用兩種不同的方法求圖中陰影部分的面積(不化簡):
方法:______________________.
方法:______________________.
()由()中兩種不同的方法,你能得到怎樣的等式?請(qǐng)說明這個(gè)等式成立;
()已知,,請(qǐng)利用()中的等式,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地表以下巖層的溫度t (℃),隨著所處的深度 h (km)的變化而變化,t與h 在一定范圍內(nèi)近似成一次函數(shù)關(guān)系.
(1)根據(jù)下表,求 t(℃)與h (km)之間的函數(shù)關(guān)系式.
(2)求當(dāng)巖層溫度達(dá)到 1770 ℃時(shí),巖層所處的深度為多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com