【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),DEAB于點(diǎn)E,且∠ADE60°,C上一點(diǎn),連結(jié)ACCD

1)求∠ACD的度數(shù);

2)證明:AD2ABAE;

3)如果AB8,∠ADC45°,請(qǐng)你編制一個(gè)計(jì)算題(不標(biāo)注新的字母),并直接給出答案.(根據(jù)編出的問題層次,給不同的得分)

【答案】1)∠ACD60°;(2)見解析;(3)請(qǐng)計(jì)算AC的長度,AC4

【解析】

(1)連接OD,利用圓周角定理和等腰三角形的性質(zhì)解答;

(2)連接BD,利用圓周角定理和射影定理證明或通過證明△ADE∽△ABD得到該結(jié)論;

(3)求AC的長度.如圖2,連接OC,BC,利用圓周角定理和等腰三角形的判定得到△ABC是等腰直角三角形,則由勾股定理了求得AC的長度即可.

(1)如圖,連接OD,

OA=OD,∠ADE=60°,DEAB,

∴∠OAD=∠ODA=90°-∠ADE =90°-60°=30°

∴∠AOD=180°-∠OAD-∠ODA=180°-30°-30° =120°,

∴∠ACD=AOD=60°;

(2)如圖,連接BD,

ABO的直徑,

∴∠ADB=90,

∵在△ADE和△ABD中,∠DAE=∠BAD,∠AED=∠ADB=90

∴△ADE∽△ABD

AD2=ABAE;

(3)請(qǐng)計(jì)算AC的長度.

如圖2,連接OC,BC

∵∠ADC=45°

∴∠AOC=2ADC=90°,

又∵點(diǎn)OAB的中點(diǎn),

AC=BC,

又∵AB是直徑,

∴∠ACB=90°

AC2+BC2=AB2,即2AC2=AB2=82

AC=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3經(jīng)過A(3,0),B(1,0)兩點(diǎn)(如圖1),頂點(diǎn)為M.

(1)a、b的值;

(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線MQ掃過的區(qū)域的面積;

(3)設(shè)直線y=2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰中, ,點(diǎn)邊上一點(diǎn),在上取點(diǎn),使

1)求證: ;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根x1,x2

1)求實(shí)數(shù)k的取值范圍;

2)是否存在實(shí)數(shù)k使得成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD8,點(diǎn)M,N分別為AD,AC上的動(dòng)點(diǎn)(不含端點(diǎn)),ANDM,連結(jié)點(diǎn)M與矩形的一個(gè)頂點(diǎn),以該線段為直徑作⊙O,當(dāng)點(diǎn)N和矩形的另一個(gè)頂點(diǎn)也在⊙O上時(shí),線段DM的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y的圖象在第二象限內(nèi)交于點(diǎn)A,過點(diǎn)AABx軸于點(diǎn)B,OB1

1)求該反比例函數(shù)的表達(dá)式;

2)若點(diǎn)P是該反比例函數(shù)圖象上一點(diǎn),且△PAB的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB、CDO上的四個(gè)點(diǎn),ADO的直徑,過點(diǎn)C的切線與AB的延長線垂直于點(diǎn)E,連接ACBD相交于點(diǎn)F

1)求證:AC平分∠BAD;

2)若O的半徑為AC6,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,CD為⊙O上不同于A、B的兩點(diǎn),∠ABD2BAC.過點(diǎn)CCEDB,垂足為E,直線ABCE相交于F點(diǎn).

1)求證:CF為⊙O的切線;

2)若CE2,BE1,求BD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)CD、BF在一條直線上,且ABBD,DEBD,ABCD,CEAF

求證:(1)△ABF≌△CDE;

2CEAF

查看答案和解析>>

同步練習(xí)冊(cè)答案