【題目】如圖,點(diǎn)E在△ABC的邊AB上,過點(diǎn)B,C,E的⊙O切AC于點(diǎn)C.直徑CD交BE于點(diǎn)F,連結(jié)BD,DE.已知∠A=∠CDE,AC=2,BD=1.
(1)求⊙O的直徑.
(2)過點(diǎn)F作FG⊥CD交BC于點(diǎn)G,求FG的長.
【答案】(1)3;(2)
【解析】
(1)因?yàn)?/span>CD是⊙O的直徑,所以∠CBD=90°,因?yàn)椤?/span>A=∠CDE=∠CBA,可得BC=AC=2,因?yàn)?/span>BD=1,在Rt△CBD中,用勾股定理即可得出⊙O的直徑;
(2)由題意,可得FG∥AC,所以∠GFB=∠CAB=∠CBA,即FG=GB=x,根據(jù)sin∠BCD=,得CG=3FG=3x,由BC=2可列方程:x+3x=2,解得x的值即可得出FG的長.
(1)∵CD是⊙O的直徑,
∴∠CBD=90°,
∵∠A=∠CDE,∠CDE=∠CBA,
∴∠CAB=∠CBA,
∴BC=AC=2,
∵BD=1,
∴⊙O的直徑CD=;
(2)如圖,∵過點(diǎn)B,C,E的圓O切AC于點(diǎn)C,直徑CD交BE于點(diǎn)F,
∴AC⊥CD,
∵FG⊥CD,
∴FG∥AC,
∴∠GFB=∠CAB=∠CBA,
∴FG=GB=x,
∵sin∠BCD=,
∴,即CG=3FG=3x,
∵BC=2,
∴x+3x=2,
∴FG=x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD的對(duì)角線相交于點(diǎn)M,△ABM的外接圓交AD于點(diǎn)E且圓心O恰好落在AD邊上,連接ME,若∠BCD=45°
(1)求證:BC為⊙O切線;
(2)求∠ADB的度數(shù);
(3)若ME=1,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運(yùn)球”被列入中招體育必考項(xiàng)目.為此某學(xué)校舉行“足球運(yùn)球”達(dá)標(biāo)測(cè)試,將成績10分、9分、8分、7分,對(duì)應(yīng)定為A,B,C,D四個(gè)等級(jí).某班根據(jù)測(cè)試成績繪制如下統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)該班級(jí)的總?cè)藬?shù)為 ,m= .
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該班“足球運(yùn)球”測(cè)試的平均成績是多少?
(4)現(xiàn)準(zhǔn)備從等級(jí)為A的4個(gè)人(2男2女)中隨機(jī)抽取兩個(gè)人去參加比賽,請(qǐng)用列表或畫樹狀圖的方法,求出恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進(jìn)行如下操作:①把△ABF翻折,點(diǎn)B落在CD邊上的點(diǎn)E處,折痕AF交BC邊于點(diǎn)F;②把△ADH翻折,點(diǎn)D落在AE邊長的點(diǎn)G處,折痕AH交CD邊于點(diǎn)H.若AD=6,AB=10,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么,有下列說法:①△EBD是等腰三角形,EB=ED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對(duì)稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )
A. ①②③B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB為3米,sinα=,則水平鋼條A2B2的長度為( 。
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減。虎a+b+c>0正確的有( 。
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補(bǔ)全整個(gè)過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com