【題目】如圖,點(diǎn)EABC的邊AB上,過點(diǎn)BC,E的⊙OAC于點(diǎn)C.直徑CDBE于點(diǎn)F,連結(jié)BD,DE.已知∠A=CDEAC=2,BD=1

1)求⊙O的直徑.

2)過點(diǎn)FFGCDBC于點(diǎn)G,求FG的長.

【答案】(1)3;(2)

【解析】

1)因?yàn)?/span>CD是⊙O的直徑,所以∠CBD=90°,因?yàn)椤?/span>A=CDE=CBA,可得BC=AC=2,因?yàn)?/span>BD=1,在RtCBD中,用勾股定理即可得出⊙O的直徑;

2)由題意,可得FGAC,所以∠GFB=CAB=CBA,即FG=GB=x,根據(jù)sinBCD=,得CG=3FG=3x,由BC=2可列方程:x+3x=2,解得x的值即可得出FG的長.

1)∵CD是⊙O的直徑,

∴∠CBD=90°,

∵∠A=CDE,∠CDE=CBA

∴∠CAB=CBA,

BC=AC=2,

BD=1,

∴⊙O的直徑CD=;

2)如圖,∵過點(diǎn)B,C,E的圓OAC于點(diǎn)C,直徑CDBE于點(diǎn)F

ACCD,

FGCD,

FGAC,

∴∠GFB=CAB=CBA

FG=GB=x,

sinBCD=,

,即CG=3FG=3x,

BC=2,

x+3x=2,

FG=x=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對(duì)角線相交于點(diǎn)M,△ABM的外接圓交AD于點(diǎn)E且圓心O恰好落在AD邊上,連接ME,若∠BCD45°

1)求證:BCO切線;

2)求∠ADB的度數(shù);

3)若ME1,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,yx成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:

(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”被列入中招體育必考項(xiàng)目.為此某學(xué)校舉行“足球運(yùn)球”達(dá)標(biāo)測(cè)試,將成績10分、9分、8分、7分,對(duì)應(yīng)定為A,B,C,D四個(gè)等級(jí).某班根據(jù)測(cè)試成績繪制如下統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

(1)該班級(jí)的總?cè)藬?shù)為   ,m   

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)該班“足球運(yùn)球”測(cè)試的平均成績是多少?

(4)現(xiàn)準(zhǔn)備從等級(jí)為A4個(gè)人(22)中隨機(jī)抽取兩個(gè)人去參加比賽,請(qǐng)用列表或畫樹狀圖的方法,求出恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進(jìn)行如下操作:把△ABF翻折,點(diǎn)B落在CD邊上的點(diǎn)E處,折痕AFBC邊于點(diǎn)F;把△ADH翻折,點(diǎn)D落在AE邊長的點(diǎn)G處,折痕AHCD邊于點(diǎn)H.若AD6AB10,則的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么,有下列說法:①△EBD是等腰三角形,EBED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對(duì)稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )

A. ①②③B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1A1,再過A1B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3A3,….若AB3米,sinα,則水平鋼條A2B2的長度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x時(shí),yx的增大而減。虎a+b+c0正確的有( 。

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1y2x之間的函數(shù)圖象如圖1,sx之間的函數(shù)圖象(部分)如圖2

1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

3)在圖2中,補(bǔ)全整個(gè)過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案