6.若a=$\sqrt{17}$-1,求(a5+2a4-17a3-a2+18a-17)2003的值.

分析 根據(jù)已知條件得a2=16-2a,然后利用降次消元法代入化簡(jiǎn)即可解決問題.

解答 解:∵a=$\sqrt{17}-1$,
∴a+1=$\sqrt{17}$,
∴a2+2a+1=17,
∴a2=16-2a,
∴a5+2a4-17a3-a2+18a-17=a(16-2a)2+42(16-2a)2-17a(16-2a)-(16-2a)+18a-17
=4a3-22a2-124a+479
=4a(16-2a)-22(16-2a)-124a+479
=-1,
∴原式=(-1)2003=-1.

點(diǎn)評(píng) 本題考查代數(shù)式求值,降次消元的思想,整體代入的方法是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,若AB⊥l,BC⊥l,B為垂足,那么A、B、C三點(diǎn)在同一直線上,其理由是在同一平面內(nèi),根據(jù)經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)y=x2+px+q的圖象的頂點(diǎn)坐標(biāo)是(5,-2),求二次函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知$\frac{x}{2}$=$\frac{y}{3}$=$\frac{z}{4}$,且xy-yz+xz=8,試求(x+y)(y-z)(x2-xy+y2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.已知45-$\sqrt{2003}$的整數(shù)部分為a,小數(shù)部分為b,求ab4-a4b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,點(diǎn)A,C,F(xiàn),B在同一直線上,∠ECD=∠DCB,F(xiàn)G∥CD.若∠ECA為α度,則∠GFB為多少度(用關(guān)于α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四邊形ABCD中,AB=BC,∠ABC=∠D=90°,BE⊥AD于E,且BE=10.試求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知BE、CE分別是∠ABC、∠ACB的平分線,BD、CE相交于點(diǎn)O,OB=OC.求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.甲車從A地出發(fā)勻速向B地行駛,同時(shí)乙車從B地出發(fā)勻速向A地行駛,甲車行駛速度比乙車快,甲、乙兩車距A地的路程y(千米)與行駛時(shí)間x(小時(shí))之間的關(guān)系如圖所示,請(qǐng)結(jié)合圖象回答下列問題:
(1)甲車速度為100km/h;乙車速度為60km/h;
(2)請(qǐng)寫出乙車行駛過程中,y(千米)與x(小時(shí))的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在行駛過程中,兩車出發(fā)多長(zhǎng)時(shí)間,兩車相距160千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案