【題目】如圖1,BC⊥AF于點(diǎn)C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿線段AF運(yùn)動到點(diǎn)F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關(guān)系(不考慮點(diǎn)P與點(diǎn)A,D,C重合的情況)?并說明理由.
【答案】(1)證明見解析(2)證明見解析
【解析】
(1)由BC⊥AF可得∠A+∠B=90°,又因為∠A+∠1=90°,根據(jù)同角的余角相等可證∠B=∠1,從而AB∥DE.
(2)分①點(diǎn)P在A,D之間時,②當(dāng)點(diǎn)P在C,D之間時,③點(diǎn)P在C,F之間時三種情況,分別過P作PG∥AB,根據(jù)平行線的性質(zhì)求解即可.
(1)如圖1,∵BC⊥AF于點(diǎn)C,
∴∠A+∠B=90°,
又∵∠A+∠1=90°,
∴∠B=∠1,
∴AB∥DE.
(2)如圖2,當(dāng)點(diǎn)P在A,D之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;
如圖所示,當(dāng)點(diǎn)P在C,D之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;
如圖所示,當(dāng)點(diǎn)P在C,F(xiàn)之間時,過P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC為等邊三角形,D為BC上任一點(diǎn),∠ADE=60°,邊DE與∠ACB外角的平分線相交于點(diǎn)E.
(1)求證:AD=DE.
(2)若點(diǎn)D在CB的延長線上,如圖2,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( 。
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列一段文字,再回答問題:
已知平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),這兩點(diǎn)間的距離P1P2=.同時當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點(diǎn)間的距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知點(diǎn)A(2,3)、B(4,2),試求A、B兩點(diǎn)間的距離;
(2)已知點(diǎn)A、B在平行于x軸的直線上,點(diǎn)A的橫坐標(biāo)為7,點(diǎn)B的橫坐標(biāo)為5,試求A、B兩點(diǎn)間的距離;
(3)已知一個三角形的各頂點(diǎn)坐標(biāo)為A(﹣2,1)、B(1,4)、C(1﹣a,5),試用含a的式子表示△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化簡,再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如圖1可以得到(a+b)2=a2+2ab+b2,請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式 。
(2)根據(jù)整式乘法的運(yùn)算法則,通過計算驗證上述等式。
(3)利用(1)中得到的結(jié)論,解決下面的問題:
若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(4)小明同學(xué)用圖3中x張邊長為a的正方形,y張邊長為b的正方形z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+7b)(9a+4b)長方形,則x+y+z= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是邊長為的等邊三角形,動點(diǎn)以的速度從點(diǎn)出發(fā),沿線段向點(diǎn)運(yùn)動.
(1)如圖甲,設(shè)點(diǎn)的運(yùn)動時間為,那么為何值時,是直角三角形?
(2)若另一動點(diǎn)從點(diǎn)出發(fā),沿射線方向運(yùn)動,連接交于點(diǎn),如果動點(diǎn)都以的速度同時出發(fā).
①如圖乙,設(shè)運(yùn)動時間為,那么為何值時,是等腰三角形?
②如圖丙,連接,請你猜想:在點(diǎn)的運(yùn)動過程中,和的面積有什么關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com