8.在平面直角坐標(biāo)中,點(diǎn)A的坐標(biāo)是(-3,4),若點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)B的坐標(biāo)為(3,-4).

分析 關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).

解答 解:點(diǎn)A的坐標(biāo)是(-3,4),若點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)B的坐標(biāo)為(3,-4),
故答案為:(3,-4).

點(diǎn)評(píng) 本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于x軸對(duì)稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針轉(zhuǎn)到位置①,可得到點(diǎn)P1,此時(shí)AP1=2;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP2=2+$\sqrt{3}$;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP3=3+$\sqrt{3}$;…,按此順序繼續(xù)旋轉(zhuǎn),得到點(diǎn)P2016,則AP2016=( 。
A.2016+671$\sqrt{3}$B.2016+672$\sqrt{3}$C.2017+672$\sqrt{3}$D.2016+673$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,OB、OC是∠AOD的兩條射線,OM和ON分別是∠AOB和∠COD內(nèi)部的一條射線,且∠AOD=α,∠MON=β.
(1)當(dāng)∠AOM=∠BOM,∠DON=∠CON時(shí),試用含α和β的代數(shù)式表示∠BOC;
(2)①當(dāng)∠AOM=2∠BOM,∠DON=2∠CON時(shí),∠BOC等于多少?(用含α和β的代數(shù)式表示)
②當(dāng)∠AOM=3∠BOM,∠DON=3∠CON時(shí),∠BOC等于多少?(用含α和β的代數(shù)式表示)
(3)根據(jù)上面的結(jié)果,請(qǐng)?zhí)羁眨寒?dāng)∠AOM=n∠BOM,∠DON=n∠CON時(shí),∠BOC=$\frac{n+1}{n}$β-$\frac{1}{n}$α.(n是正整數(shù))(用含α和β的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.化簡(jiǎn)$\frac{2x}{x-2}$+$\frac{x}{2-x}$的結(jié)果是( 。
A.xB.x-1C.$\frac{3x}{x-2}$D.$\frac{x}{x-2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線y=$\frac{1}{2}$x2+mx-2m-2(m≥0)與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C
(1)當(dāng)m=1時(shí),求點(diǎn)A和點(diǎn)B的坐標(biāo)
(2)拋物線上有一點(diǎn)D(-1,n),若△ACD的面積為5,求m的值
(3)P為拋物線上A、B之間一點(diǎn)(不包括A、B),PM⊥x軸于點(diǎn)M,求$\frac{AM•BM}{PM}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的方程2x+a-4=0的解是x=2,則a的值等于( 。
A.-8B.0C.2D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.下面是一道尚未編完的應(yīng)用題,請(qǐng)你補(bǔ)充完整,使列出的方程為2x+4(35-x)=94.
七年級(jí)一班組織了“我愛閱讀”讀書心得匯報(bào)評(píng)比活動(dòng),為了倡導(dǎo)同學(xué)們多讀書,讀好書,老師為所有參加比賽的同學(xué)都準(zhǔn)備了獎(jiǎng)品,獎(jiǎng)品為兩種書簽,共35份,單價(jià)分別為2元和4元,共花費(fèi)94元,則兩種書簽各多少份.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問題:
(1)非等邊的等腰三角形有1條對(duì)稱軸,非正方形的長(zhǎng)方形有2條對(duì)稱軸,等邊三角形有3條對(duì)稱軸;
(2)觀察下列一組凸多邊形(實(shí)線畫出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫出所得的凸五邊形;
(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;
(4)請(qǐng)你畫一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,則sinA的值是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案