【題目】如圖所示,ABCD中,E,F分別是AB、CD上的點(diǎn),AECF,M、N分別是DE、BF的中點(diǎn).

1)求證:四邊形ENFM是平行四邊形.

2)若∠ABC2A,求∠A的度數(shù).

【答案】1)見解析;(2)∠A60°

【解析】

1)先證ADE≌△CBFSAS),得DE=BFAEDCFB,進(jìn)而得MEFN,AEDABF,即MEFN,由此得證;

2)由平行線的性質(zhì)得A+∠ABC180°,據(jù)此計(jì)算得解.

1)證明:四邊形ABCD是平行四邊形,

ADBC,AC

AECF,

∴△ADE≌△CBFSAS),

∴∠AEDCFB,DEBF,

由四邊形ABCD是平行四邊形,

DCAB

∴∠CFBABF

∴∠AEDABF

MEFN,

MN分別是DE、BF的中點(diǎn),且DEBF,

MEFN

四邊形ENFM是平行四邊形;

2四邊形ABCD是平行四邊形,

∴∠A+∠ABC180°

∵∠ABC2∠A,

∴3∠A180°,

∴∠A60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實(shí)踐活動四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請根據(jù)圖中信息,解答下列問題:

(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動類”課程的班級比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F,連接BD.

(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

小題1:如圖1,可以求出陰影部分的面積是_______ (寫成兩數(shù)平方差的形式)

小題2:如圖2,若將陰影部分裁剪下來,重新拼成一個(gè)矩形,它的寬是_______,長是______,面積是_________ (寫成多項(xiàng)式乘法的形式).

小題3:比較圖 1,圖2的陰影部分面積,可以得到乘法公式________ (用式子表達(dá)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,擊打臺球時(shí)小球反彈前后的運(yùn)動路線遵循對稱原理,即小球反彈前后的運(yùn)動路線與臺球案邊緣的夾角相等(α=β),在一次擊打臺球時(shí),把位于點(diǎn)P處的小球沿所示方向擊出,小球經(jīng)過5次反彈后正好回到點(diǎn)P,若臺球案的邊AD的長度為4,則小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動的總路程為( )

A.16
B.16
C.20
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”假日期間,某網(wǎng)店為了促銷,設(shè)計(jì)了一種抽獎送積分活動,在該網(wǎng)店網(wǎng)頁上顯示如圖所示的圓形轉(zhuǎn)盤,轉(zhuǎn)盤被均等的分成四份,四個(gè)扇形上分別標(biāo)有“謝謝惠顧”、“10分”、“20分”、“40分”字樣.參與抽獎的顧客只需用鼠標(biāo)點(diǎn)擊轉(zhuǎn)盤,指針就會在轉(zhuǎn)動的過程中隨機(jī)的停在某個(gè)扇形區(qū)域,指針指向扇形上的積分就是顧客獲得的獎勵(lì)積分,凡是在活動期間下單的顧客,均可獲得兩次抽獎機(jī)會,求兩次抽獎?lì)櫩瞳@得的總積分不低于30分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(20),點(diǎn)B的坐標(biāo)為(01),對角線BDx軸平行,若直線ykx+5+2kk≠0)與菱形ABCD有交點(diǎn),則k的取值范圍是( 。

A.B.

C.D.2≤k≤2k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,上一點(diǎn),垂直平分,分別交,于點(diǎn),,,連接,

1)求證:四邊形是菱形;

2)若,的中點(diǎn),,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1:y=ax2+bx+4與x軸交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M(﹣ ,5)是拋物線C1上一點(diǎn),拋物線C2與拋物線C1關(guān)于y軸對稱,點(diǎn)A、B、M關(guān)于y軸的對稱點(diǎn)分別為點(diǎn)A′、B′、M′.

(1)求拋物線C1的解析式;
(2)過點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案