【題目】如圖,AOB的三個頂點都在網格的格點上網格中的每個小正方形的邊長均為一個長度單位,以點O建立平面直角坐標系,AOB繞點O逆時針旋轉90,得到A1OB1(AA1是對應點)

(1)寫出點A1,B1的坐標 ;

(2)求旋轉過程中邊OB掃過的面積(結果保留π);

【答案】(1)作圖見解析;(2).

【解析】試題分析:(1)利用網格特點和旋轉的性質畫出點A、B的對應點A1、B1即可得到A1OB1;

2)由于旋轉過程中邊OB掃過的部分為以O為圓心,OB為半徑,圓心角為90度的扇形,于是利用扇形面積公式可求解.

試題解析:解:(1)如圖,A1OB1為所作;

2OB==,所以旋轉過程中邊OB掃過的面積==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校數(shù)學興趣小組,對函數(shù)y|x1|+1的圖象和性質進行了探究,探究過程如下:

1)自變量x的取值范圍是全體實數(shù),xy的幾組對應值如表:

x

3

2

1

0

1

2

3

4

5

y

5

4

m

2

1

2

3

4

5

其中m   

2)如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象:

3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:

序號

函數(shù)圖象特征

函數(shù)變化規(guī)律

示例1

在直線x1的右側,函數(shù)圖象呈上升狀態(tài)

x1時,yx的增大而增大

在直線x1的左側,函數(shù)圖象呈下降狀態(tài)

   

示例2

函數(shù)圖象經過點(﹣3,5

x=﹣3時,y5

函數(shù)圖象的最低點是(11

   

4)當2y4時,x的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點 A、B 在數(shù)軸上分別表示有理數(shù) a、b.

1)對照數(shù)軸,填寫下表:

2)若 A、B 兩點間的距離記為 d,試問 d a、bab)有何數(shù)量關系?數(shù)學式子表示.

3)求所有到數(shù) 5 -5 的距離之和為 10 的整數(shù)的和,列式計算.

4)若點 C 表示的數(shù)為 x,當點 C 在什么位置時,|x+1|+|x2|取得的值最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網格中,的三個頂點均在格點上,請解答:

1)判斷的形狀,并說明理由;

2)在網格圖中畫出AD//BC,且AD=BC;

3)連接CD,若EBC中點,FAD中點,四邊形AECF是什么特殊的四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,點D在BC上,且CD=3cm,現(xiàn)有兩個動點P,Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度沿AC向終點C運動;點Q以1.25cm/s的速度沿BC向終點C運動,兩點到達終點后停止運動。過點P作PE∥BC交AD于點E,連結EQ,設動點運動的時間為ts(t>0)

(1) 連結DP,經過1s后,四邊形EQDP能夠成為平行四邊形嗎? 請說明理由;

(2) 當t為何值時,△EDQ為直角三角形?

(3) 如圖②,設點M是EQ的中點,在點P、Q的整個運動過程中,試探究點M的運動路徑長度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)x,y在數(shù)軸上對應點如圖所示:

1)在數(shù)軸上表示﹣x,|y|;

2)試把x,y0,﹣x|y|這五個數(shù)從小到大用“<”號連接,

3)化簡:|x+y||yx|+|y|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAD邊的中點.

(1)用直尺和圓規(guī)作⊙O,使⊙O 經過B、CE三點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若正方形的邊長為4,求(1)中所作⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

同步練習冊答案