【題目】如圖,在平面直角坐標(biāo)系中xOy中,已知點(diǎn)A(0,1),以O(shè)A為邊在右側(cè)作等邊三角形OAA1 , 再過點(diǎn)A1作x軸的垂線,垂足為點(diǎn)O1 , 以O(shè)1A1為邊在右側(cè)作等邊三角形O1A1A2;…按此規(guī)律繼續(xù)作下去,得到等邊三角形O2016A2016A2017 , 則點(diǎn)A2017的縱坐標(biāo)為( )

A.( 2017
B.( 2016
C.( 2015
D.( 2014

【答案】A
【解析】解:∵三角形OAA1是等邊三角形,

∴OA1=OA=1,∠AOA1=60°,

∴∠O1OA1=30°.

在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,

∴O1A1= OA1= ,即點(diǎn)A1的縱坐標(biāo)為

同理,O2A2= O1A2=( 2,O3A3= O2A3=( 3

即點(diǎn)A2的縱坐標(biāo)為( 2,

點(diǎn)A3的縱坐標(biāo)為( 3,

∴點(diǎn)A2017的縱坐標(biāo)為( 2017

故選A.

【考點(diǎn)精析】利用數(shù)與式的規(guī)律對(duì)題目進(jìn)行判斷即可得到答案,需要熟知先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)F.

(1)請(qǐng)連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,兩弧在下方交于點(diǎn);

②連接于點(diǎn).

所以線段邊上的高線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵  ,  ,

∴點(diǎn),分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀思考:

小迪在學(xué)習(xí)過程中,發(fā)現(xiàn)數(shù)軸上兩點(diǎn)間的距離可以用表示這兩點(diǎn)數(shù)的差來表示,探索過程如下:

如圖1所示,線段AB,BC,CD的長(zhǎng)度可表示為:AB341,BC54﹣(﹣1),CD3=(﹣1)﹣(﹣4),于是他歸納出這樣的結(jié)論:如果點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,當(dāng)ba時(shí),ABba(較大數(shù)﹣較小數(shù)).

2)嘗試應(yīng)用:

①如圖2所示,計(jì)算:OE   ,EF   

②把一條數(shù)軸在數(shù)m處對(duì)折,使表示﹣192019兩數(shù)的點(diǎn)恰好互相重合,則m   

3)問題解決:

①如圖3所示,點(diǎn)P表示數(shù)x,點(diǎn)M表示數(shù)﹣2,點(diǎn)N表示數(shù)2x+8,且MN4PM,求出點(diǎn)P和點(diǎn)N分別表示的數(shù);

②在上述①的條件下,是否存在點(diǎn)Q,使PQ+QN3QM?若存在,請(qǐng)直接寫出點(diǎn)Q所表示的數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)分別在邊上,相交于點(diǎn),如果已知,那么還不能判定,補(bǔ)充下列一個(gè)條件后,仍無法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點(diǎn),連接BD,使∠A=2∠1,點(diǎn)E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.

(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶以1500元/畝的單價(jià)承包了15畝地種植板栗,每畝種植80株優(yōu)質(zhì)板栗嫁接苗,購買嫁接苗,購買價(jià)格為5元/株,且每畝地的管理費(fèi)用為800元,一年下來喜獲豐收平均每畝板栗產(chǎn)量為600kg,已知當(dāng)?shù)匕謇醯呐l(fā)和;零售價(jià)格分別如下表所示:

銷售方式

批發(fā)

零售

售價(jià)(元/kg)

10

14

通過市場(chǎng)調(diào)研發(fā)現(xiàn),批發(fā)與零售的總銷量只能達(dá)到總產(chǎn)量的70%,其中零售量不高于總銷售量的40%,經(jīng)多方協(xié)調(diào)當(dāng)?shù)厥称芳庸S承諾以7元/kg的價(jià)格收購該農(nóng)戶余下的板栗,設(shè)板栗全部售出后的總利潤(rùn)為y元,其中零售x kg.

(1)求y與x之間的函數(shù)關(guān)系

(2)求該農(nóng)戶所收獲的最大利潤(rùn)

(總利潤(rùn)=總銷售額-總承包費(fèi)用-購買板栗苗的費(fèi)用-總管理費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)A(﹣6,0),點(diǎn)B在原點(diǎn),CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動(dòng)順時(shí)針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊(cè)答案