【題目】在△ABC中,∠ACB=90°,AC=BC,直線(xiàn)MN經(jīng)過(guò)點(diǎn)C,且ADMND,BEMNE

1)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:ADC≌△CEBDE=AD+BE;

2)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=ADBE;

3)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)寫(xiě)出這個(gè)等量關(guān)系,并加以證明.

【答案】1)①證明見(jiàn)解析;②證明見(jiàn)解析;(2)證明見(jiàn)解析;(3DE=BEAD

【解析】

1)根據(jù)同角的余角相等得到∠ACD=CBE,即可證明△ADC≌△CEB;

2)根據(jù)全等三角形的性質(zhì)得到AD=CEDC=EB,即可證明DE=ADBE;

3)與(1)的證明方法類(lèi)似,證的△ADC≌△CEB,得出AD=CE,DC=EB,即可得出DE、AD、BE的等量關(guān)鍵.

1)∵∠ACB=90°

ACD+BCE=90°

又∵ADMN,BEMN

∴∠ADC=CEB=90°

∴∠BCE+CBE=90°

∴∠ACD=CBE

在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CE,DC=BE

DE=DC+CE=BE+AD;

2)在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CE,DC=EB

DE=CEDC=ADEB

3DE=BEAD

在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CE,DC=BE

DE=DCCE=BEAD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線(xiàn),CF是角平分線(xiàn),CFAD于點(diǎn)G,交BE于點(diǎn)H,下面說(shuō)法中正確的序號(hào)是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)的三角形)ABC的頂點(diǎn)AC的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請(qǐng)作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1;

3)寫(xiě)出點(diǎn)B1的坐標(biāo);

4)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列各題:

(1)先化簡(jiǎn),再求代數(shù)式(的值,其中x=cos30°+;

(2)已知α是銳角,且sin(α+15°)=.計(jì)算-4cosα-(π-3.14)0+tanα+()-1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B、E、C、F在一條直線(xiàn)上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】選擇適當(dāng)方法解下列方程

(1)

(2)

(3)

(4) x23x60;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=60°, ADC=ABC=90°,在AB、AD上分別找一點(diǎn)F、E,連接CE、EF、CF,當(dāng)△CEF的周長(zhǎng)最小時(shí),則∠ECF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

小明遇到一個(gè)問(wèn)題:在中,,三邊的長(zhǎng)分別為、、,求的面積.

小明是這樣解決問(wèn)題的:如圖①所示,先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為),再在網(wǎng)格中畫(huà)出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出的面積.他把這種解決問(wèn)題的方法稱(chēng)為構(gòu)圖法.

參考小明解決問(wèn)題的方法,完成下列問(wèn)題:

)圖是一個(gè)的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為) .

①利用構(gòu)圖法在答卷的圖中畫(huà)出三邊長(zhǎng)分別為、、的格點(diǎn)

②計(jì)算①中的面積為__________.(直接寫(xiě)出答案)

)如圖,已知,以,為邊向外作正方形,連接

①判斷面積之間的關(guān)系,并說(shuō)明理由.

②若,,直接寫(xiě)出六邊形的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕EF分別與AB、DC交于點(diǎn)E和點(diǎn)F

1)證明:ADF≌△ABE;

2)若AD=12,DC=18,求AEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案