【題目】如圖,BE⊥AC、CF⊥AB于點E、F,BE與CF交于點D,DE=DF,連接AD.
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
【答案】(1)證明見解析;證明見解析.
【解析】試題分析:(1)根據(jù)BE⊥AC、CF⊥AB,DE=DF可直接得出AD是∠BAC的平分線,由角平分線的定義可知∠FAD=∠EAD;
(2)由DE=DF,AD=AD可知Rt△ADF≌Rt△ADE,故可得出∠ADF=∠ADE,由對頂角相等可知∠BDF=∠CDE,進而可得出∠ADB=∠ADC,由以上條件可判斷出△ABD≌△ACD,由全等三角形的判定定理即可得出BD=CD.
試題解析:證明:(1)∵BE⊥AC、CF⊥AB,DE=DF,
∴AD是∠BAC的平分線,
∴∠FAD=∠EAD;
(2)∵△ADF與△ADE是直角三角形,DE=DF,AD=AD,
∴Rt△ADF≌Rt△ADE,
∴∠ADF=∠ADE,
∵∠BDF=∠CDE,
∴∠ADF+∠BDF=∠ADF+∠CDE,
即∠ADB=∠ADC,
在△ABD≌△ACD中,
,
∴△ABD≌△ACD,
∴BD=CD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,直線l過點C,BD⊥l,AE⊥l,垂足分別為D、E.
(1)當直線l不與底邊AB相交時,求證:ED=AE+BD;
(2)如圖2,將直線l繞點C順時針旋轉(zhuǎn),使l與底邊AB相交時,請你探究ED、AE、BD三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是書法小組某次測驗的成績統(tǒng)計表.則成績的眾數(shù)是( )
成績/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 4 | 3 | 2 | 1 |
A.1B.4C.7D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果長方形ABCD的中心與平面直角坐標系的原點重合,且點A和點B的坐標分別為(-2,3)和(2,3),則矩形ABCD的面積為( )
A. 32 B. 24 C. 16 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.
(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標;
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關(guān)于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com