【題目】如圖,長(zhǎng)方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);

(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長(zhǎng)為最小,并求△BDM周長(zhǎng)的最小值及此時(shí)點(diǎn)M的坐標(biāo);

(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=2x2+6x;(2)D(0,1);(3)BDM的周長(zhǎng)最小值為,M(,);(4)點(diǎn)P的坐標(biāo)為().

【解析】

試題分析:(1)將點(diǎn)B(1,4),E(3,0)的坐標(biāo)代入拋物線的解析式,得到關(guān)于a、b的方程組,求得a、b的值,從而可得到拋物線的解析式;(2)依據(jù)同角的余角相等證明BDC=DE0,然后再依據(jù)AAS證明BDC≌△DEO,從而得到OD=AO=1,于是可求得點(diǎn)D的坐標(biāo);(3)作點(diǎn)B關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)B,連接BD交拋物線的對(duì)稱軸與點(diǎn)M.先求得拋物線的對(duì)稱軸方程,從而得到點(diǎn)B的坐標(biāo),由軸對(duì)稱的性質(zhì)可知當(dāng)點(diǎn)D、M、B在一條直線上時(shí),BMD的周長(zhǎng)有最小值,依據(jù)兩點(diǎn)間的距離公式求得BD和BD的長(zhǎng)度,從而得到三角形的周長(zhǎng)最小值,然后依據(jù)待定系數(shù)法求得D、B的解析式,然后將點(diǎn)M的橫坐標(biāo)代入可求得點(diǎn)M的縱坐標(biāo);(4)過點(diǎn)F作FGx軸,垂足為G.設(shè)點(diǎn)F(a,2a2+6a),則OG=a,F(xiàn)G=2a2+6a.然后依據(jù)SFDA=S梯形DOGFSODASAGF的三角形的面積與a的函數(shù)關(guān)系式,然后依據(jù)二次函數(shù)的性質(zhì)求解即可.

試題解析:(1)將點(diǎn)B(1,4),E(3,0)的坐標(biāo)代入拋物線的解析式得:,

解得:a=-2,b=6,

拋物線的解析式為y=2x2+6x.

(2)如圖1所示;

BDDE,

∴∠BDE=90°

∴∠BDC+EDO=90°

∵∠ODE+DEO=90°,

∴∠BDC=DE0.

BDC和DOE中,

∴△BDC≌△DEO.

OD=AO=1.

D(0,1).

(3)如圖2所示:作點(diǎn)B關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)B,連接BD交拋物線的對(duì)稱軸與點(diǎn)M.

x==,

點(diǎn)B的坐標(biāo)為(2,4).

點(diǎn)B與點(diǎn)B關(guān)于x=對(duì)稱,

MB=BM.

DM+MB=DM+MB

當(dāng)點(diǎn)D、M、B在一條直線上時(shí),MD+MB有最小值(即BMD的周長(zhǎng)有最小值).

由兩點(diǎn)間的距離公式可知:BD=,DB=,

∴△BDM的最小值=

設(shè)直線BD的解析式為y=kx+b.

將點(diǎn)D、B的坐標(biāo)代入得:,

解得:k=,b=1.

直線DB的解析式為y=x+1.

將x=代入得:y=

M().

(4)如圖3所示:過點(diǎn)F作FGx軸,垂足為G.

設(shè)點(diǎn)F(a,2a2+6a),則OG=a,F(xiàn)G=2a2+6a.

S梯形DOGF=(OD+FG)OG=2a2+6a+1)×a=a3+3a2+a,SODA=ODOA=×1×1=,SAGF=AGFG=a3+4a23a,

SFDA=S梯形DOGFSODASAGF=a2+a

當(dāng)a=時(shí),SFDA的最大值為

點(diǎn)P的坐標(biāo)為(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=3x2向左平移2個(gè)單位,再向上平移1個(gè)單位,所得的拋物線的解析式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a3a+4b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.

(1)求拋物線的解析式;

(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEAC、CFAB于點(diǎn)EF,BECF交于點(diǎn)D,DE=DF,連接AD

求證:(1FAD=EAD;

2BD=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形的外角和等于( 。

A.180°B.360°C.720°D.n﹣2)180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC,CEAB,D、E為垂足,BDCE交于點(diǎn)O,則圖中全等三角形共有_________對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明:“四邊形中至少有一個(gè)角是直角或鈍角”時(shí),應(yīng)假設(shè)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEAC、CFAB于點(diǎn)E、F,BECF交于點(diǎn)DDE=DF,連接AD

求證:(1FAD=EAD;

2BD=CD

查看答案和解析>>

同步練習(xí)冊(cè)答案