【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,將△DEC繞點(diǎn)C旋轉(zhuǎn).
(1)當(dāng)△DEC統(tǒng)點(diǎn)C旋轉(zhuǎn)到點(diǎn)D恰好落在AB邊上時(shí),如圖2.
①當(dāng)∠B=∠E=30°時(shí),此時(shí)旋轉(zhuǎn)角的大小為 ;
②當(dāng)∠B=∠E=α時(shí),此時(shí)旋轉(zhuǎn)角的大小為 (用含a的式子表示).
(2)當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小楊同學(xué)猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請(qǐng)你證明小楊同學(xué)的猜想.若不正確,請(qǐng)說明理由.
【答案】(1)①60°;②2α;(2)小楊同學(xué)猜想是正確的.證明見解析.
【解析】
(1)①證明△ADC是等邊三角形即可.
②如圖2中,作CH⊥AD于H.想辦法證明∠ACD=2∠B即可解決問題.
(2)小揚(yáng)同學(xué)猜想是正確的.過B作BN⊥CD于N,過E作EM⊥AC于M,如圖3,想辦法證明△CBN≌△CEM(AAS)即可解決問題.
解:(1)①∵∠B=30°,∠ACB=90°,
∴∠CAD=90°﹣30°=60°.
∵CA=CD,
∴△ACD是等邊三角形,
∴∠ACD=60°,
∴旋轉(zhuǎn)角為60°.
故答案為:60°.
②如圖2中,作CH⊥AD于H.
∵CA=CD,CH⊥AD,
∴∠ACH=∠DCH.
∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,
∴∠ACH=∠B,
∴∠ACD=2∠ACH=2∠B=2α,
∴旋轉(zhuǎn)角為2α.
故答案為:2α.
(2)小楊同學(xué)猜想是正確的.證明如下:
過B作BN⊥CD于N,過E作EM⊥AC于M,如圖3,
∵∠ACB=∠DCE=90°,
∴∠1+∠2=90°,∠3+∠2=90°,
∴∠1=∠3.
∵BN⊥CD于N,EM⊥AC于M,
∴∠BNC=∠EMC=90°.
∵△ACB≌△DCE,
∴BC=EC,
在△CBN和△CEM中,
∠BNC=∠EMC,∠1=∠3,BC=EC,
∴△CBN≌△CEM(AAS),
∴BN=EM.
∵S△BDCCDBN,S△ACEACEM.
∵CD=AC,
∴S△BDC=S△ACE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-4, 1),B(-1,3),C(-1,1)
(1)將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△;平移△ABC,若A對(duì)應(yīng)的點(diǎn)坐標(biāo)為(-4,-5),畫出△;
(2)若△繞某一點(diǎn)旋轉(zhuǎn)可以得到△,直接寫出旋轉(zhuǎn)中心坐標(biāo)是__________;
(3)在x軸上有一點(diǎn)P是的PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo)___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)共同完成一項(xiàng)工程,乙隊(duì)先單獨(dú)做1天后,再由兩隊(duì)合作2天就完成了全部工程.已知甲隊(duì)單獨(dú)完成工程所需的天數(shù)是乙隊(duì)單獨(dú)完成所需天數(shù)的,求甲、乙兩隊(duì)單獨(dú)完成各需多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階,下圖是其中的甲、乙兩段臺(tái)階的示意圖(圖中的數(shù)字表示每一級(jí)臺(tái)階的高度,單位cm).已知數(shù)據(jù)15、16、16、14、14、15的方差S甲2=,數(shù)據(jù)11、15、18、17、10、19的方差S乙2=.
請(qǐng)你用學(xué)過的統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)通過計(jì)算,回答下列問題:
(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?
(2)哪段臺(tái)階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點(diǎn), 以OA為半徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5)、(﹣1,3).
(1)請(qǐng)?jiān)趫D中正確作出平面直角坐標(biāo)系;
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′;
(3)點(diǎn)B′的坐標(biāo)為 ,△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等邊三角形,交軸于點(diǎn),,,,,且、滿足.
(1)如圖,求、的坐標(biāo)及的長(zhǎng);
(2)如圖,點(diǎn)是延長(zhǎng)線上一點(diǎn),點(diǎn)是右側(cè)一點(diǎn),,且.連接.
求證:直線必過點(diǎn)關(guān)于軸對(duì)稱的對(duì)稱點(diǎn);
(3)如圖,若點(diǎn)在延長(zhǎng)線上,點(diǎn)在延長(zhǎng)線上,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com