我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關(guān)系,并證明你的結(jié)論.
(1)等腰梯形、矩形、正方形.
(2)結(jié)論:等對角線四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和大于或等于一條對角線的長.
已知:四邊形ABCD中,對角線AC,BD交于點(diǎn)O,AC=BD,
且∠AOD=60度.
求證:BC+AD≥AC.
證明:過點(diǎn)D作DFAC,在DF上截取DE,使DE=AC.
連接CE,BE.
故∠EDO=60°,四邊形ACED是平行四邊形.
∵AC=DE,AC=BD,
∴DE=BD,
∵∠EDO=60°,
∴△BDE是等邊三角形.
所以DE=BE=AC.
①當(dāng)BC與CE不在同一條直線上時(如圖1),

在△BCE中,有BC+CE>BE.
所以BC+AD>AC.
②當(dāng)BC與CE在同一條直線上時(如圖2),
則BC+CE=BE.
因此BC+AD=AC
綜合①、②,得BC+AD≥AC.
即等對角線四邊形中兩條對角線所夾角為60°時,這對60°角所對的兩邊之和大于或等于其中一條對角線的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABCD中,

AE=EB,AF=2,則FC等于_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系XOY中,有A(3,2),B(-1,-4),P是X軸上的一點(diǎn),Q是Y軸上的一點(diǎn),若以點(diǎn)A,B,P,Q四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則Q點(diǎn)的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A是直線l外一點(diǎn),在l上取兩點(diǎn)B、C,分別以A、C為圓心,BC、AB長為半徑畫弧,兩弧交于點(diǎn)D,分別連接AB、AD、CD,則四邊形ABCD一定是( 。
A.平行四邊形B.矩形C.菱形D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在?ABCD中,AC交BD于點(diǎn)O,點(diǎn)E,點(diǎn)F分別是OA,OC的中點(diǎn),請判斷線段BE,DF的位置關(guān)系和數(shù)量關(guān)系,并說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

不能判定四邊形ABCD為平行四邊形的條件是( 。
A.AB=CD,AD=BCB.AB=CD,ABCD
C.AB=CD,ADCDD.AD=BC,ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點(diǎn),CD=BF,以AD為邊作等邊△ADE.
(1)△ACD和△CBF全等嗎?請說明理由;
(2)判斷四邊形CDEF的形狀,并說明理由;
(3)當(dāng)點(diǎn)D在線段BC上移動到何處時,∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平行四邊形ABCD中,AC交BD于點(diǎn)O,AC=8cm,∠AOB=60°.若AC=BD,試求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連接菱形的各邊中點(diǎn)所得到的四邊形是( 。
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

同步練習(xí)冊答案