【題目】如圖,在ABC中,DBC邊上的一點,EAD的中點,過A點作BC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:BDCD;

2)不在原圖添加字母和線段,對ABC只加一個條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.

【答案】(1)

【解析】

1)由AFBC平行,利用兩直線平行內錯角相等得到一對角相等,再一對對頂角相等,且由EAD的中點,得到AE=DE,利用AAS得到三角形AFE與三角形DCE全等,利用全等三角形的對應邊相等即可得證;

2)根據(jù)有一組鄰邊相等的平行四邊形是菱形進行判斷即可.

1)∵AFBC

∴∠AFE=∠DCE

EAD的中點

AEDE

在△AFE和△DCE中,

∴△AFE≌△DCEAAS),

AFCD

AFBD

BDCD;

2)當△ABC滿足:∠BAC90°時,四邊形AFBD菱形,

理由如下:

AFBD,AFBD

∴四邊形AFBD是平行四邊形,

∵∠BAC90°,BDCD,

BDAD,

∴平行四邊形AFBD是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4(a0)軸交于點B (3 ,0) C (4 ,0)軸交于點A

(1) a = ,b = ;

(2) M從點A出發(fā)以每秒1個單位長度的速度沿ABB運動,同時,點N從點B出發(fā)以每秒1個單位長度的速度沿BCC運動,當點M到達B點時,兩點停止運動.t為何值時,以BM、N為頂點的三角形是等腰三角形?

(3) P是第一象限拋物線上的一點,若BP恰好平分∠ABC,請直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點ABP⊙O相交于點D,C⊙O上的一點,分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀.已知購買甲型機器人1臺,乙型機器人2臺,共需14萬元;購買甲型機器人2臺,乙型機器人3臺,共需24萬元.

(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;

(2)已知甲型和乙型機器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃購買這兩種型號的機器人共8臺,總費用不超過41萬元,并且使這8臺機器人每小時分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購買方案?哪個方案費用最低,最低費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、B、C的坐標;

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正方形ABCD的邊長為6,菱形EFGH的三個頂點EG,H分別在正方形ABCDAB,CD,DA上,AH=2

1)寫出菱形EFGH的邊長的最小值;

2)請你探究點F到直線CD的距離為定值;

3)連接FC,設DG=x,FCG的面積為y

①求yx之間的函數(shù)關系式并求出y的取值范圍;

②當x的長為何值時,點F恰好在正方形ABCD的邊上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點E、F分別是ABCD的邊BC、AD的中點.

1)求證:四邊形AECF是平行四邊形;

2)若BC10,∠BAC90°,求AECF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣30)和(﹣2,0)之間,其部分圖象如圖,則下列結論:①4acb20;②2ab0③a+b+c0;Mx1,y1)、Nx2y2)在拋物線上,若x1x2,則y1y2,其中正確結論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線與矩形AOBC的邊AC、BC分別交于點E,F,E34),且F8,)為拋物線的頂點,將CEF沿著EF翻折,點C恰好落在邊OB上的點D處.

1)求該拋物線的解析式;

2)點P為線段ED上一動點,連接PF,當PF平分∠EFD時,求PD的長度;

3)四邊形AODE1個單位/秒的速度沿著x軸向右運動,當點E與點C重合時停止運動,設運動時間為t秒,運動后的四邊形AODEDEF重合部分的面積為S,請直接寫出St的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案