【題目】如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點(diǎn)B (-3 ,0) 和C (4 ,0)與軸交于點(diǎn)A.
(1) a = ,b = ;
(2) 點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿BC向C運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)B點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).t為何值時(shí),以B、M、N為頂點(diǎn)的三角形是等腰三角形?
(3) 點(diǎn)P是第一象限拋物線上的一點(diǎn),若BP恰好平分∠ABC,請(qǐng)直接寫出此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1),;(2);(3)
【解析】
(1)直接利用待定系數(shù)法求二次函數(shù)解析式得出即可;
(2)分三種情況:①當(dāng)BM=BN時(shí),即5-t=t,②當(dāng)BM=NM=5-t時(shí),過(guò)點(diǎn)M作ME⊥OB,因?yàn)?/span>AO⊥BO,所以ME∥AO,可得:即可解答;③當(dāng)BE=MN=t時(shí),過(guò)點(diǎn)E作EF⊥BM于點(diǎn)F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以即可解答;
(3)設(shè)BP交y軸于點(diǎn)G,過(guò)點(diǎn)G作GH⊥AB于點(diǎn)H,因?yàn)?/span>BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設(shè)出點(diǎn)P坐標(biāo),易證△BGO∽△BPD,所以,即可解答.
解:解:(1)∵拋物線過(guò)點(diǎn)B (-3 ,0) 和C (4 ,0),
∴ ,
解得:;
(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,
在Rt△ABO中,由勾股定理得:AB=5,
t秒時(shí),AM=t,BN=t,BM=AB-AM=5-t,
①如圖:當(dāng)BM=BN時(shí),即5-t=t,解得:t= ;
,
②如圖,當(dāng)BM=NM=5-t時(shí),過(guò)點(diǎn)M作ME⊥OB,因?yàn)?/span>BN=t,由三線合一得:BE=BN=t,又因?yàn)?/span>AO⊥BO,所以ME∥AO,所以,即 ,解得:t=;
③如圖:當(dāng)BE=MN=t時(shí),過(guò)點(diǎn)E作EF⊥BM于點(diǎn)F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以,即 ,解得:t= .
(3)設(shè)BP交y軸于點(diǎn)G,過(guò)點(diǎn)G作GH⊥AB于點(diǎn)H,因?yàn)?/span>BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設(shè)P(m,-m2+m+4),因?yàn)?/span>GO∥PD,∴△BGO∽△BPD,∴ ,即 ,解得:m1=,m2=-3(點(diǎn)P在第一象限,所以不符合題意,舍去),m1=時(shí),-m2+m+4=
故點(diǎn)P的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取九年級(jí)部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
九年級(jí)接受調(diào)查的同學(xué)共有多少名,并補(bǔ)全條形統(tǒng)計(jì)圖;
九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)聽(tīng)音樂(lè)減壓的學(xué)生有多少名;
若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,請(qǐng)用畫樹(shù)狀圖或列表的方法求同時(shí)選出的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由我國(guó)完全自主設(shè)計(jì)、自主建造的首艘國(guó)產(chǎn)航母于2018年5月成功完成第一次海上試驗(yàn)任務(wù).如圖,航母由西向東航行,到達(dá)處時(shí),測(cè)得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時(shí)間后到達(dá)B處,測(cè)得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長(zhǎng).
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,∠C=90°.
(1)CD與⊙O有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由;
(2)若∠CDB=60°,AB=6,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買甲種樹(shù)苗的棵數(shù)相同.
(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買多少棵乙種樹(shù)苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABC的AB邊切于點(diǎn)A,將直角三角板沿BA邊所在的直線向右平移,當(dāng)平移到AC與圓O相切時(shí),該直角三角板的平移距離為( )
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在同一直線噵路上同起點(diǎn),同方向同進(jìn)出發(fā),分別以不同的速度勻速跑步1500米,當(dāng)甲超出乙200米時(shí),甲停下來(lái)等候乙,甲、乙會(huì)合后,兩人分別以原來(lái)的速度繼續(xù)跑向終點(diǎn),先到達(dá)終點(diǎn)的人在終點(diǎn)休息,在跑步的整個(gè)過(guò)程中,甲、乙兩人的距離y(米)與出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則甲到終點(diǎn)時(shí),乙距離終點(diǎn)______________米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對(duì)△ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫出添加條件并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com