【題目】港珠澳大橋,從2009年開工建造,于20181024日正式通車.其全長(zhǎng)55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長(zhǎng)的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測(cè)得海豚塔斜拉索頂端A距離海平面的高度,先測(cè)出斜拉索底端C到橋塔的距離(CD的長(zhǎng))約為100米,又在C點(diǎn)測(cè)得A點(diǎn)的仰角為30°,測(cè)得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長(zhǎng)).(已知1.73,tan20°≈0.36,結(jié)果精確到0.1

【答案】93.7米

【解析】

首先在直角三角形ADC中求得AD的長(zhǎng),然后在直角三角形BDC中求得BD的長(zhǎng),兩者相加即可求得AB的長(zhǎng).

在Rt△ADC中,∵,CD=100,∴AD=tan30°CD

在Rt△BDC中,∵,CD=100,∴BD=tan20°CD≈0.36×100=36.

AB=AD+DB=57.7+36=93.7(米).

答:斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離93.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的65日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購,經(jīng)調(diào)查:購買了3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花了16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.

1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有幾種購買方案;

3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,且

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點(diǎn)的坐標(biāo);

(3)軸上是否存在點(diǎn),使有最大值,如果存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;

第二步:將紙片沿折疊,使落到線段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點(diǎn);

2)請(qǐng)寫出一個(gè)生活中應(yīng)用黃金分割的實(shí)際例子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的面積為,它的兩條對(duì)角線交于點(diǎn),以、為兩鄰邊作平行四邊形,平行四邊形的對(duì)角線交于點(diǎn),同樣以為兩鄰邊作平行四邊形,…,依此類推,則平行四邊形的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、DABBD,EDBD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長(zhǎng)為.然后利用幾何知識(shí)可知:當(dāng)A、C、E在一條直線上時(shí),x=時(shí),AC+CE的最小值為10.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的兩邊在坐標(biāo)軸上,點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),軸上的某一點(diǎn)為位似中心,作位似圖形,且點(diǎn)的坐標(biāo),則位似中心的坐標(biāo)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案