【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個長方體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù)計算這個長方體的體積是_______cm3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當(dāng)洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系式是否成立(0<α<90°),請說明理由.
(1)sinα+cosα≤1;
(2)sin2α=2sinα.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地發(fā)生8.1級地震,震源深度20千米.救援隊火速趕往災(zāi)區(qū)救援,探測出某建筑物廢墟下方點C處有生命跡象.在廢墟一側(cè)某面上選兩探測點A、B,AB相距2米,探測線與該面的夾角分別是30°和45°(如圖).試確定生命所在點C與探測面的距離.(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2﹣CF2取最大值時,求tan∠DCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸負(fù)半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由.
(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于封閉的平面圖形,如果圖形上或圖形內(nèi)的點S到圖形上的任意一點P之間的線段都在圖形內(nèi)或圖形上,那么這樣的點S稱為“亮點”.如圖,對于封閉圖形ABCDE,S1是“亮點”,S2不是“亮點”,如果AB∥DE,AE∥DC,AB=2,AE=1,∠B=∠C=60°,那么該圖形中所有“亮點”組成的圖形的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com