【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)的坐標(biāo);
(3)在軸上是否存在點(diǎn),使有最大值,如果存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)反比例函數(shù)表達(dá)式為: ;一次函數(shù)的表達(dá)式為:;(2);(3) 點(diǎn)坐標(biāo)為.
【解析】
(1)先過點(diǎn)A作AD⊥x軸,根據(jù)tan∠ACO=2,求得點(diǎn)A的坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法計(jì)算兩個(gè)函數(shù)解析式;
(2)先聯(lián)立兩個(gè)函數(shù)解析式,再通過解方程求得交點(diǎn)B的坐標(biāo)即可.
(3)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),可得 ,當(dāng)三點(diǎn)共線時(shí),有最大值;求出的解析式求解即可.
(1)過點(diǎn)作軸于,
的坐標(biāo)為,的坐標(biāo)為,
,,
,
,
故,
,
反比例函數(shù)表達(dá)式為: .
又點(diǎn)、在直線上,
,解得:,
一次函數(shù)的表達(dá)式為:;
(2)由得:,
解得:或,
,
;
(3)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),可得 ,
當(dāng)三點(diǎn)構(gòu)成三角形時(shí),,
當(dāng)三點(diǎn)共線時(shí), ,
所以當(dāng)三點(diǎn)共線時(shí),有最大值;
此時(shí),由、可得解析式為,
當(dāng)時(shí),,所以點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過20時(shí),按2元/計(jì)費(fèi);月用水量超過20時(shí),其中的20仍按2元/收費(fèi),超過部分按元/計(jì)費(fèi).設(shè)每戶家庭用用水量為時(shí),應(yīng)交水費(fèi)元.
(1)分別求出和時(shí)與的函數(shù)表達(dá)式;
(2)小明家第二季度交納水費(fèi)的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費(fèi)金額 | 30元 | 34元 | 42.6元 |
小明家這個(gè)季度共用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段河壩的斷面為梯形ABCD,試根據(jù)圖中數(shù)據(jù),求出坡角和壩底寬AD.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張正方形紙的內(nèi)部被針扎了2010個(gè)孔,這些孔和正方形的頂點(diǎn)之中的任何3點(diǎn)都不共線.作若干條互不相交的線段,它們的端點(diǎn)都是這些孔或正方形的頂點(diǎn),這些線段將正方形分割成一些三角形,并且在這些三角形的內(nèi)部和邊上都不再有小孔.請(qǐng)問一共作了多少條線段?共得到了多少個(gè)三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線 經(jīng)過 , 兩點(diǎn),與 軸相交于點(diǎn) ,連接 .點(diǎn) 為拋物線上一動(dòng)點(diǎn),過點(diǎn) 作 軸的垂線 ,交直線 于點(diǎn) ,交 軸于點(diǎn) .
Ⅰ 求拋物線的表達(dá)式;
Ⅱ 當(dāng) 位于 軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn) 作 直線 , 為垂足.當(dāng)點(diǎn) 運(yùn)動(dòng)到何處時(shí),以 , , 為頂點(diǎn)的三角形與 相似?并求出此時(shí)點(diǎn) 的坐標(biāo);
Ⅲ 如圖2,當(dāng)點(diǎn) 在位于直線 上方的拋物線上運(yùn)動(dòng)時(shí),連接 , .請(qǐng)問 的面積 能否取得最大值?若能,請(qǐng)求出最大面積 ,并求出此時(shí)點(diǎn) 的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)任務(wù).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;
第二步:將紙片沿折疊,使落到線段上,的對(duì)應(yīng)點(diǎn)為,展平;
第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長(zhǎng)線段的比等于較長(zhǎng)線段與原線段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線段,再展平;
第二步:將紙片沿
第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).
任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點(diǎn);
(2)請(qǐng)寫出一個(gè)生活中應(yīng)用黃金分割的實(shí)際例子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋,從2009年開工建造,于2018年10月24日正式通車.其全長(zhǎng)55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長(zhǎng)的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測(cè)得海豚塔斜拉索頂端A距離海平面的高度,先測(cè)出斜拉索底端C到橋塔的距離(CD的長(zhǎng))約為100米,又在C點(diǎn)測(cè)得A點(diǎn)的仰角為30°,測(cè)得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長(zhǎng)).(已知≈1.73,tan20°≈0.36,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正多邊形每個(gè)內(nèi)角比相鄰?fù)饨谴?/span>60°.
(1)求這個(gè)正多邊形的邊數(shù);
(2)求這個(gè)正多邊形的內(nèi)切圓與外切圓的半徑之比;
(3)將這個(gè)多邊形對(duì)折,并完全重合,求得到圖形的內(nèi)角和是多少度(按一層計(jì)算)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com