【題目】如圖,已知拋物線,將拋物線沿軸翻折,得到拋物線

1)求出拋物線的函數(shù)表達(dá)式;

2)現(xiàn)將拋物線向左平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸的交點(diǎn)從左到右依次為,;將拋物線向右也平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸交點(diǎn)從左到右依次為,.在平移過(guò)程中,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)存在.當(dāng)時(shí),以點(diǎn),,為頂點(diǎn)的四邊形是矩形.

【解析】

1)拋物線翻折前后頂點(diǎn)關(guān)于x軸對(duì)稱,a互為相反數(shù);

2)連接AN,NE,EM,MA,M,N關(guān)于原點(diǎn)O對(duì)稱OMON,A,E關(guān)于原點(diǎn)O對(duì)稱OAOE,判斷四邊形ANEM為平行四邊形;若AM2ME2AE2,解得m3,即可求解.

解:(1拋物線的頂點(diǎn)為,

沿軸翻折后頂點(diǎn)的坐標(biāo)為

拋物線的函數(shù)表達(dá)式為

2)存在.

理由:連接,,,.依題意可得:,

,關(guān)于原點(diǎn)對(duì)稱,

、拋物線與軸的兩個(gè)交點(diǎn)分別為,

,,,關(guān)于原點(diǎn)對(duì)稱,

四邊形為平行四邊形.

,

,

,則,解得

此時(shí)是直角三角形,且

當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,為邊上的一個(gè)(不與、重合)點(diǎn),且相交于點(diǎn)

1)填空:______;______

2)當(dāng)時(shí),證明:

3面積的最小值是_______

4)當(dāng)的內(nèi)心在的外部時(shí),直接寫(xiě)出的范圍______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將拋物線平移后,新拋物線經(jīng)過(guò)原拋物線的頂點(diǎn),新拋物線與軸正半軸交于點(diǎn),聯(lián)結(jié),設(shè)新拋物線與軸的另一交點(diǎn)是,新拋物線的頂點(diǎn)是.

1)求點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)在新拋物線上,聯(lián)結(jié),如果平分,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,將拋物線沿軸左右平移,點(diǎn)的對(duì)應(yīng)點(diǎn)為,當(dāng)相似時(shí),請(qǐng)直接寫(xiě)出平移后得到拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從江岸區(qū)某初中九年級(jí)1200名學(xué)生中隨機(jī)選取一部分學(xué)生進(jìn)行調(diào)查,調(diào)查情況:A、上網(wǎng)時(shí)間≤1小時(shí);B、1小時(shí)<上網(wǎng)時(shí)間≤4小時(shí);C、4小時(shí)<上網(wǎng)時(shí)間≤7小時(shí);D、上網(wǎng)時(shí)間>7小時(shí).統(tǒng)計(jì)結(jié)果制成了如圖統(tǒng)計(jì)圖:以下結(jié)論中正確的個(gè)數(shù)是(

①參加調(diào)查的學(xué)生有200人;

②估計(jì)校上網(wǎng)不超過(guò)7小時(shí)的學(xué)生人數(shù)是900

C的人數(shù)是60人;

D所對(duì)的圓心角是72°

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(13)、(41)、(21),先將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2,點(diǎn)A1的對(duì)應(yīng)點(diǎn)為點(diǎn)A2

1)畫(huà)出△A1B1C1和△A2B2C2;

2)求出在這兩次變換過(guò)程中,點(diǎn)A經(jīng)過(guò)點(diǎn)A1到達(dá)A2的路徑總長(zhǎng);

3)求線段B1C1旋轉(zhuǎn)到B2C2所掃過(guò)的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)城市周邊的農(nóng)民的種菜的積極性,某公司計(jì)劃新建兩種溫室80棟,將其售給農(nóng)民種菜.已知建1個(gè)型溫室和2個(gè)型溫室一共需要8.1萬(wàn)元,兩種溫室的成本和出售價(jià)如下表:

成本(萬(wàn)元/棟)

2.5

出售價(jià)(萬(wàn)元/棟)

3.1

3.5

1)求的值;

2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負(fù)擔(dān),試問(wèn)采用什么方案建設(shè)溫室可使利潤(rùn)最少,最少利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)根據(jù)圖象信息,當(dāng)t   分鐘時(shí)甲乙兩人相遇,甲的速度為   /分鐘,乙的速度為   /分鐘;

2)圖中點(diǎn)A的坐標(biāo)為   ;

3)求線段AB所直線的函數(shù)表達(dá)式;

4)在整個(gè)過(guò)程中,何時(shí)兩人相距400米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1和圖2,在△ABC中,AB13,BC14.

探究:如圖1,AHBC于點(diǎn)H,則AH___,AC___,△ABC的面積___.

拓展:如圖2,點(diǎn)DAC上(可與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為EF,設(shè)BDx,AEmCFn,(當(dāng)點(diǎn)DA重合時(shí),我們認(rèn)為0.

1)用含xmn的代數(shù)式表示;

2)求(m+n)x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;

3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.

發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙(xiě)出過(guò)程),并寫(xiě)出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1、圖2,在圓O中,,將弦AB與弧AB所圍成的弓形包括邊界的陰影部分繞點(diǎn)B順時(shí)針旋轉(zhuǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)是

點(diǎn)O到線段AB的距離是______;______;點(diǎn)O落在陰影部分包括邊界時(shí),的取值范圍是______;

如圖3,線段B與優(yōu)弧ACB的交點(diǎn)是D,當(dāng)時(shí),說(shuō)明點(diǎn)DAO的延長(zhǎng)線上;

當(dāng)直線與圓O相切時(shí),求的值并求此時(shí)點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案