【題目】如圖,AB是⊙O的直徑,弦BC=4cm,點(diǎn)F是弦BC的中點(diǎn),∠ABC=60°,若動(dòng)點(diǎn)E以2cm/s的速度在線段AB上由A向B運(yùn)動(dòng),連接EF,設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△BEF是直角三角形時(shí),t的值等于______.

【答案】2ss

【解析】

求出∠C=90°,求出AB,分為兩種情況畫出圖形,根據(jù)圖形求出移動(dòng)的距離即可

∵動(dòng)點(diǎn)E2cm/s的速度從A點(diǎn)出發(fā)沿著AB的方向運(yùn)動(dòng)

AB是⊙O直徑,∴∠C=90°.

FBC中點(diǎn),BC=4cm,∴BF=CF=2cm

∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC=8cm

分為兩種情況

①當(dāng)∠EFB=90°時(shí)

∵∠C=90°,∴∠EFB=∠C,∴ACEF

FC=BF,∴AE=BE,EO重合,AE=4,t=4÷2=2(s);

②當(dāng)∠FEB=90°時(shí)

∵∠ABC=60°,∴∠BFE=30°,∴BE=BF=1,AE=8﹣1=7,t=7÷2=s).

故答案為:2ss

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關(guān)系式;

(2)若一輛貨車同時(shí)從乙地出發(fā)前往甲地,客車比貨車平均每小時(shí)多行駛20千米,3小時(shí)后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時(shí),貨車恰好進(jìn)入A加油站(兩車加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.

(1)求拋物線的函數(shù)表達(dá)式.

(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC外接圓上的點(diǎn),且BD位于AC的兩側(cè),DEAB,垂足為EDE的延長線交此圓于點(diǎn)FBGAD,垂足為G,BGDE于點(diǎn)H,DC,FB的延長線交于點(diǎn)P,且PC=PB

(1)求證:∠BAD=PCB

(2)求證:BGCD;

(3)設(shè)ABC外接圓的圓心為O,若AB=DH,COD=23°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑ODBC,垂足為E,若BC=,OE=3;

求:(1)O的半徑;

(2)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,切點(diǎn)為B,OA交⊙O于點(diǎn)C,且AC=OC.

(1)求弧BC的度數(shù);

(2)設(shè)⊙O的半徑為5,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬路兩側(cè)有兩根燈桿AB、CD,當(dāng)小明站在點(diǎn)N處時(shí),在燈C的照射下小明的影長正好為NB,在燈A的照射下小明的影長為NE,測得BD=24m,NB=6m,NE=2m.

(1)若小明的身高M(jìn)N=1.6m,求AB的長;

(2)試判斷這兩根燈桿的高度是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,將繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為,得到

1)如圖1,當(dāng)時(shí),設(shè)相交于點(diǎn),求證是等邊三角形;

2)如圖2,設(shè)中點(diǎn)為,中點(diǎn)為,,連接.在旋轉(zhuǎn)過程中,線段的長度是否存在最大值?如果存在,請求出這個(gè)最大值并說明此時(shí)旋轉(zhuǎn)角的度數(shù),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.回答下列問題:

(1)只要原四邊形的兩條對角線______,就能使中點(diǎn)四邊形是菱形;

(2)只要原四邊形的兩條對角線______,就能使中點(diǎn)四邊形是矩形;

(3)請你設(shè)計(jì)一個(gè)中點(diǎn)四邊形為正方形,但原四邊形又不是正方形的四邊形,把它畫出來.

查看答案和解析>>

同步練習(xí)冊答案