10.已知某二次函數(shù)的對稱軸平行于y軸,圖象頂點(diǎn)為A(1,0),且與y軸交于點(diǎn)B(0,1)
(1)求該二次函數(shù)的解析式;
(2)設(shè)C為該二次函數(shù)圖象上橫坐標(biāo)為2的點(diǎn),記$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,試用$\overrightarrow{a}$、$\overrightarrow$表示$\overrightarrow{OC}$.

分析 (1)由圖象頂點(diǎn)為A(1,0),首先可設(shè)該二次函數(shù)的解析式為:y=a(x-1)2,又由與y軸交于點(diǎn)B(0,1),可利用待定系數(shù)法求得答案;
(2)首先求得點(diǎn)C的坐標(biāo),然后根據(jù)題意作出圖形,易求得$\overrightarrow{BC}$,然后由三角形法則,求得答案.

解答 解:(1)設(shè)該二次函數(shù)的解析式為:y=a(x-1)2,
∵與y軸交于點(diǎn)B(0,1),
∴a=1,
∴該二次函數(shù)的解析式為:y=(x-1)2

(2)∵C為該二次函數(shù)圖象上橫坐標(biāo)為2的點(diǎn),
∴y=(2-1)2=1,
∴C點(diǎn)坐標(biāo)為:(2,1),
∴BC∥x軸,
∴$\overrightarrow{BC}$=2$\overrightarrow{OA}$=2$\overrightarrow{a}$,
∴$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{BC}$=$\overrightarrow$+2$\overrightarrow{a}$.

點(diǎn)評 此題考查了平面向量的知識、待定系數(shù)法求函數(shù)的解析式以及點(diǎn)與二次函數(shù)的關(guān)系.注意結(jié)合題意畫出圖形,利用圖形求解是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:2$\sqrt{8}$$+\frac{1}{3}\sqrt{18}$$-\frac{1}{4}\sqrt{32}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.為了讓廣大青少年學(xué)生走向操場,走進(jìn)自然,走到陽光下,積極參加體育鍛煉,我國啟動了“全國億萬學(xué)生陽光體育運(yùn)動”.小明和小亮在課外活動中,報(bào)名參加了短跑訓(xùn)練小組.在近幾次百米訓(xùn)練中,所測成績?nèi)鐖D所示,請根據(jù)圖中所示解答以下問題.
(1)請根據(jù)圖中信息,補(bǔ)全下面的表格;
次數(shù)12345
小明13.313.413.313.213.3
小亮13.213.413.113.513.3
(2)從圖中看,小明與小亮哪次的成績最好?
(3)分別計(jì)算他們的平均數(shù)、極差和方差填入右表格,若你是他們的教練,將小明與小亮的成績比較后,你將分別給予他們怎樣的建議?
平均數(shù)極差方差
小明13.30.20.004
小亮13.30.40.02

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,最大∠A是最小∠C的2倍,且AB=2,AC=3,則BC的長為$\sqrt{10}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,將一副三角板的兩個(gè)銳角頂點(diǎn)放到一塊,∠AOB=45°,∠COD=30°,OM,ON分別是∠AOC,∠BOD的角平分線.
(1)當(dāng)∠COD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)至射線OB與OC重合時(shí)(如圖2),則∠MON的大小為37.5°;
(2)如圖3,在(1)的條件下,繼續(xù)繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)∠COD,當(dāng)∠BOC=10°時(shí),求∠MON的大小,寫出解答過程;
(3)在∠COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)過程中,∠MON=37.5或142.5°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點(diǎn)A(1,0),B(3,2),不等式x2+bx+c<x+m的解集為1<x<3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.將一副三角板按如圖所示疊放,若設(shè)AB=1,則四邊形ABCD的面積為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.如圖,已知△ABC,按如下步驟作圖:①以A為圓心,AB長為半徑畫;②以C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)AD,CD.則△ABC≌△ADC的依據(jù)是SSS.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案