【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點(diǎn)A,分別過正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為 .
【答案】EF=AF+AE=DE+BF=8+5=13.
【解析】
試題分析:根據(jù)正方形的性質(zhì)、直角三角形兩個(gè)銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對(duì)應(yīng)邊相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
解:∵ABCD是正方形(已知),
∴AB=AD,∠ABC=∠BAD=90°;
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
∴∠FBA=∠EAD(等量代換);
∵BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,
∴在Rt△AFB和Rt△AED中,
∵,
∴△AFB≌△AED(AAS),
∴AF=DE=8,BF=AE=5(全等三角形的對(duì)應(yīng)邊相等),
∴EF=AF+AE=DE+BF=8+5=13.
故答案為:13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的每個(gè)內(nèi)角都等于140°,則這個(gè)多邊形的邊數(shù)是( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“420”雅安地震后,某商家為支援災(zāi)區(qū)人民,計(jì)劃捐贈(zèng)帳篷16800頂,該商家備有2輛大貨車、8輛小貨車運(yùn)送帳篷.計(jì)劃大貨車比小貨車每輛每次多運(yùn)帳篷200頂,大、小貨車每天均運(yùn)送一次,兩天恰好運(yùn)完.
(1)求大、小貨車原計(jì)劃每輛每次各運(yùn)送帳篷多少頂?
(2)因地震導(dǎo)致路基受損,實(shí)際運(yùn)送過程中,每輛大貨車每次比原計(jì)劃少運(yùn)200m頂,每輛小貨車每次比原計(jì)劃少運(yùn)300頂,為了盡快將帳篷運(yùn)送到災(zāi)區(qū),大貨車每天比原計(jì)劃多跑次,小貨車每天比原計(jì)劃多跑m次,一天恰好運(yùn)送了帳篷14400頂,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把命題改寫成“如果……那么……”的形式.
(1)對(duì)頂角相等.
(2)兩直線平行,同位角相等.
(3)等角的余角相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A. m3+m3=m6 B. m3m2=m6 C. (m3)2=m5 D. m3÷m2=m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①正方形都是全等形;②等邊三角形都是全等形;③形狀相同的圖形是全等形;④能夠完全重合的圖形是全等形.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com