【題目】如圖1,在平面直角坐標(biāo)系中,,將線段平移得到線段,點(diǎn)的坐標(biāo)為,連結(jié).
(1)點(diǎn)的坐標(biāo)為__________________(用含的式子表示);
(2)若的面積為4,求點(diǎn)的坐標(biāo);
(3)如圖2,在(2)的條件下,延長(zhǎng)交軸于點(diǎn),延長(zhǎng)交軸于,是軸上一動(dòng)點(diǎn),的值記為,在點(diǎn)運(yùn)動(dòng)的過(guò)程中,的值是否發(fā)生變化,若不變,請(qǐng)求出的值,并寫出此時(shí)的取值范圍,若變化,說(shuō)明理由.
【答案】(1);(2)D(4,3);(3)當(dāng)時(shí),,變化;當(dāng)時(shí),,不變;當(dāng)時(shí),,變化.
【解析】
(1)各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加m,縱坐標(biāo)減1,即可得到結(jié)論;(2)(2)如圖1中,作DH⊥OC于H.根據(jù)S△ADC=S梯形ADHO-S△AOC-S△DCH,計(jì)算即可.
(3)分三種情形:①如圖2-1中,當(dāng)t<-時(shí).②如圖2-2中,當(dāng)-≤t≤2時(shí).③如圖2-3中,當(dāng)t>2時(shí),分別求解即可.
解:
(1)由平移到,可得平移后各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加m,縱坐標(biāo)減1,所以平移后坐標(biāo)為;
(2)如圖1中,作DH⊥OC于H.
∵S△ADC=S梯形ADHO-S△AOC-S△DCH,
∴(1+3)(m+2)-×1×m-×2×3=4,
解得m=2,
∴D(4,3).
(3)①如圖2-1中,當(dāng)t<-時(shí),S=2-3t,變化.
理由:由題意P(t,0),E(0,-3),C(2,0),F(-,0),B(2,4).A(0,1).
S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(--t)(4-1)+(2-t)3=2-3t.
②如圖2-2中,當(dāng)-≤t≤2時(shí),s=4不變.
理由:S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(t+)(4-1)+(2-t)3=4.
③如圖2-3中,當(dāng)t>2時(shí),S=3t-2變化.
理由:S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(t+)(4-1)+(t-2)3=3t-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A,B,C,D均在⊙O上,CD為∠ACE的角平分線.
(1)求證:△ABD為等腰三角形;
(2)若∠DCE=45°,BD=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AE=AB,直線DE交BC于點(diǎn)F,則∠BEF=( 。
A. 50°B. 30°C. 60°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形ABCD的面積為
A. B. 5C. 3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,D是BC的中點(diǎn),DE⊥BC,垂足為D,交AB于點(diǎn)E,且BE2-EA2=AC2,
(1)求證:∠A=90°.
(2)若DE=3,BD=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長(zhǎng)是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在等邊△ABC中, AB=, D,E分別是AB,BC的中點(diǎn)(如圖).若將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△BD1E1,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),記射線CE1與AD1的交點(diǎn)為P.點(diǎn)P到BC所在直線的距離的最大值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)矩形的對(duì)角線的中點(diǎn)作,交邊于點(diǎn),交邊于點(diǎn),分別連接、,若,,則的長(zhǎng)為( )
A. B. 4C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合。將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,射線EF與線段AB相交于點(diǎn)G,與射線CA相交于點(diǎn)Q.
(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com