【題目】重慶電視臺組織了一次學(xué)生夏令營活動,有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見扇形統(tǒng)計圖.
(1)參加這次夏令營活動的初中生共有__________人.
(2)活動組織者號召參加這次夏令營活動的所有學(xué)生為貧困學(xué)生捐款. 結(jié)果小學(xué)生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大學(xué)生每人捐款20元,把每個學(xué)生的捐款數(shù)(以元為單位)一一記錄下來,則在這組數(shù)據(jù)中,中位數(shù)是 元,求出平均每人捐款多少元?
【答案】(1)80;(2)10;平均每人捐款11.5元.
【解析】
(1)參加這次夏令營活動的初中生所占比例是:110%20%30%=40%,就可以求出人數(shù).
(2)小學(xué)生、高中生和大學(xué)生的人數(shù)為200×20%=40,200×30%=60,200×10%=20,根據(jù)平均數(shù)公式就可以求出平均數(shù).
(3)因為初中生最多,所以眾數(shù)為初中生捐款數(shù).
(1)參加這次夏令營活動的初中生共有200×(110%20%30%)=80人;
故填:80;
(2)小學(xué)生、高中生和大學(xué)生的人數(shù)為200×20%=40,200×30%=60,200×10%=20,
∴小學(xué)生、初中生、高中生和大學(xué)生的人數(shù)分別為40,80,60,20,捐款金額依次為5,10,15,20
所以捐款數(shù)的100、101位在初中生中,即為10元.
故填:10;
平均每人捐款==11.5(元);
故平均每人捐款11.5元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機(jī)器人從微博火到了朋友圈,據(jù)介紹,這些機(jī)器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機(jī)器人、300臺B種機(jī)器人分揀快遞包裹.A,B兩種機(jī)器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機(jī)器人工作3小時,全部B種機(jī)器人工作2小時,一共可以分揀3.12萬件包裹.
(1)求兩種機(jī)器人每臺每小時各分揀多少件包裹;
(2)為了進(jìn)一步提高效率,快遞公司計劃再購進(jìn)A,B兩種機(jī)器人共200臺,若要保證新購進(jìn)的這批機(jī)器人每小時的總分揀量不少于7000件,求最多應(yīng)購進(jìn)A種機(jī)器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標(biāo)為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當(dāng)H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖所示的函數(shù)圖象是由函數(shù)y=(x﹣1)2+1(x≥0)的圖象C1和圖象C2組成中心對稱圖形,對稱中心為點(0,2).已知不重合的兩點A、B分別在圖象C1和C2上,點A、B的橫坐標(biāo)分別為a、b,且a+b=0.當(dāng)b<x≤a時該函數(shù)的最大值和最小值均與a、b的值無關(guān),則a的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c圖象經(jīng)過點A (1,4)和點C (0,3).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)圖象,直接回答下列問題:
①當(dāng)﹣1<x<2時,求函數(shù)y的取值范圍: .
②當(dāng)y≥3時,求x的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校把一塊形狀為直角三角形的廢地開辟為生物園,如圖所示,∠ACB=90°,AC=40m,BC=30m.線段CD是一條水渠,且D點在邊AB上,已知水渠的造價為800元,問:當(dāng)水渠的造價最低時,CD長為多少米?最低造價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價格為每千克30元。物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元。經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當(dāng)x=60時,y=80;x=50時,y=100。在銷售過程中,每天還要支付其他費(fèi)用450元。
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式。
(3)當(dāng)銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在 中,、、三邊的長分別為、、,求這個三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為 ),在網(wǎng)格中畫出格點 (即 三個頂點都在小正方形的頂點處),如圖所示,這樣借用網(wǎng)格就能計算出它的面積.
(1)請你直接寫出 的面積為 .
(2)若三邊的長分別為、、 運(yùn)用構(gòu)圖法求出這三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com