【題目】如圖,在正方形ABCD中,MBC上一點,FAM的中點,EFAM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:

2)若AB12BM5,求DE的長.

【答案】1)見解析;(2DE=

【解析】

1)根據(jù)正方形的性質得ADBC,ADAB,∠B90°,再證明RtABMRtEFA,利用相似比和比例的性質可得到結論;

2)先利用勾股定理計算出AM13,則AF,由于RtABMRtEFA,則利用相似比可計算出AE,然后計算AEAD即可.

1)證明:四邊形ABCD為正方形,

∴AD∥BCADAB,∠B90°

∴∠AMB∠MAD,

∵EF⊥AM,

∴∠AFE90°,

∴Rt△ABM∽Rt△EFA,

∴ABEFAMAE,

ADEFAMAE,

∴ADAEAMEF

2)解:在Rt△ABM中,AM13

∵FAM的中點,

∴AFAM,

∵Rt△ABM∽Rt△EFA,

,即,

∴AE,

∴DEAEAD12═

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A2,3),B(﹣3,n)兩點.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)所給條件,請直接寫出不等式kx+b的解集;

3)過點BBCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為正方形ABCD對角線上一點,以點O為圓心,OA長為半徑的

OBC相切于點E.

(1)求證:CD是⊙ O的切線;

(2)若正方形ABCD的邊長為10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC90°,AB3,AC4,ADE的頂點DBC上運動,且∠DAE90°,∠ADE=∠B,F為線段DE的中點,連接CF,在點D運動過程中,線段CF長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是(  )

A. 1一定不是關于x的方程x2+bx+a=0的根

B. 0一定不是關于x的方程x2+bx+a=0的根

C. 1和﹣1都是關于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE6,BE8,DE10

1)求BC的長;

2)若∠CBE36°,求∠ADC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是某地區(qū)今年4月份的囗平均氣溫的頻數(shù)分布直方圖(直方圖中每一組數(shù)都包括前一個邊界值,不包括后一個邊界值),則下列結論中錯誤的是(

A.該地區(qū)4月份的口平均氣溫在18℃以上(18℃)的共有10

B.該直方圖的組距是4℃

C.該地區(qū)4月份的口平均氣溫的最大值至少是22℃

D.該直方圖中口平均氣溫為6~10℃的這一組數(shù)的頻數(shù)為3,頻率為0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,.

(Ⅰ)如圖Ⅰ,邊上一點(不與點重合),將線段繞點逆時針旋轉得到,連接.

求證:(1);

(2).

(Ⅱ)如圖Ⅱ,外一點,且,仍將線段繞點逆時針旋轉得到,連接,.

(1)的結論是否仍然成立?并請你說明理由;

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當水面寬為12m時,橋洞頂部離水面4m.、

1)建立平面直角坐標系,并求該拋物線的函數(shù)表達式;

2)若水面上升1m,水面寬度將減少多少?

查看答案和解析>>

同步練習冊答案