【題目】如圖,四邊形ABCD、AEFG均為正方形,其中E在BC上,且B、E兩點不重合,并連接BG.根據圖中標示的角判斷下列∠1、∠2、∠3、∠4的大小關系何者正確?( )
A.∠1<∠2
B.∠1>∠2
C.∠3<∠4
D.∠3>∠4
【答案】D
【解析】解:∵四邊形ABCD、AEFG均為正方形, ∴∠BAD=∠EAG=90°,
∵∠BAD=∠1+∠DAE=90°,
∠EAG=∠2+∠DAE=90°,
∴∠1=∠2,
在Rt△ABE中,AE>AB,
∵四邊形AEFG是正方形,
∴AE=AG,
∴AG>AB,
∴∠3>∠4.
故選D.
【考點精析】利用正方形的性質對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經市場調查知,年銷售量y(萬件)與銷售單價x(元/件)的關系滿足下表所示的規(guī)律.
銷售單價x(元/件) | … | 60 | 65 | 70 | 80 | 85 | … |
年銷售量y(萬件) | … | 140 | 135 | 130 | 120 | 115 | … |
(1)y與x之間的函數(shù)關系式及自變量x的取值范圍。
(2)經測算:年銷售量不低于90萬件時,每件產品成本降低2元,設銷售該產品年獲利潤為W(萬元)(W=年銷售額﹣成本﹣投資),求出年銷售量低于90萬件和不低于90萬件時,W與x之間的函數(shù)關系式;
(3)在(2)的條件下,當銷售單位定為多少時,公司銷售這種產品年獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3800米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質量分為5級:1級質量為優(yōu);2級質量為良;3級質量為輕度污染;4級質量為中度污染;5級質量為重度污染.某城市隨機抽取了一年中某些天的空氣質量檢測結果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據圖中信息,解答下列各題:
(1)本次調查共抽取了天的空氣質量檢測結果進行統(tǒng)計;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中3級空氣質量所對應的圓心角為°;
(4)如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據目前的統(tǒng)計,請你估計該年該城市只有多少天適宜戶外活動.(一年天數(shù)按365天計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“蒙上眼睛射擊正中靶心”是必然事件
B.“拋一枚硬幣,正面朝上的概率為 ”說明擲一枚質地均勻的硬幣10次,必有5次正面朝上
C.“拋一枚均勻的正方體骰子,朝上的點數(shù)是3的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是3”這一事件發(fā)生的頻率穩(wěn)定在 附近
D.為了解某種節(jié)能燈的使用壽命,應選擇全面調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商業(yè)集團新建一小車停車場,經測算,此停車場每天需固定支出的費用(設施維修費、車輛管理人員工資等)為800元.為制定合理的收費標準,該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車為1440輛;當每輛次小車的停車費超過5元時,每增加1元,到此處停放的小車就減少120輛次.為便于結算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費一每天的固定支出)
A型利潤 | B型利潤 | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
(1)當x≤5時,寫出y與x之間的關系式,并說明每輛小車的停車費最少不低于多少元;
(2)當x>5時,寫出y與x之間的函數(shù)關系式(不必寫出x的取值范圍);
(3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應定為多少元?此時日凈收入是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E.
(1)求證:∠1=∠BAD;
(2)求證:BE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com