【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個平面圖形.
(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點D移到BA的延長線上時,點C也在BA的延長線上;當(dāng)點C移到AB的延長線上時,點A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.
【答案】(1)相等;理由見解析;(2)AD=13cm,BC=10cm.
【解析】
試題(1)相等.連接AC,根據(jù)SSS證明兩個三角形全等即可;(2)分兩種情形①當(dāng)點C在點D右側(cè)時,②當(dāng)點C在點D左側(cè)時,分別列出方程組即可解決問題,注意最后理由三角形三邊關(guān)系定理,檢驗是否符合題意.
試題解析:(1)相等.
理由:連接AC,在△ACD和△ACB中,, ∴△ACD≌△ACB, ∴∠B=∠D.
(2)設(shè)AD=x,BC=y,
當(dāng)點C在點D右側(cè)時,, 解得:,
當(dāng)點C在點D左側(cè)時,解得:,
此時AC=17,CD=5,AD=8,5+8<17, ∴不合題意,
∴AD=13cm,BC=10cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,F,C,E在一條直線上,AB=DE,AB∥DE,∠A=∠D.
(1)求證:△ABC≌△DEF;(2)AC和DF存在怎樣的關(guān)系?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點A(a,0),交y軸于點B(0,b),且a、b滿足.
(1)點A的坐標(biāo)為 ;點B的坐標(biāo)為 ;
(2)如圖1,若點C的坐標(biāo)為(-3,-2),且BE⊥AC于點E,OD⊥OC交BE延長線于D,試求點D的坐標(biāo);
(3)如圖2,M、N分別為OA、OB邊上的點,OM=ON,OP⊥AN交AB于點P,過點P 作PG⊥BM,交AN的延長線于點G,請寫出線段AG、OP與PG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年8月1日,鄭州市物價局召開居民使用天然氣銷售價格新聞通氣會,宣布鄭州市天然氣價格調(diào)整方案如下:
一戶居民一個月天然氣用量的范圍 | 天然氣價格(單位:元/立方米) |
不超過50立方米 | 2.56 |
超過50立方米的部分 | 3.33 |
(1)若張老師家9月份使用天然氣36立方米,則需繳納天然氣費為______元;
(2)若張老師家10月份使用天然氣立方米,則需繳納的天然氣費為_______元;
(3)依此方案計算,若張老師家11月份實際繳納天然氣費201.26元,求張老師家11月份使用天然氣多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為等邊三角形ABC內(nèi)的一點,且P到三個頂點A,B,C的距離分別為3,4,5,則△ABC的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“推進(jìn)全科閱讀,培育時代新人”.某學(xué)校為了更好地開展學(xué)生讀書活動,隨機調(diào)查了八年級50名學(xué)生最近一周的讀書時間,統(tǒng)計數(shù)據(jù)如下表:
時間(小時) | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 5 | 8 | 12 | 15 | 10 |
(1)寫出這50名學(xué)生讀書時間的眾數(shù)、中位數(shù)、平均數(shù);
(2)根據(jù)上述表格補全下面的條形統(tǒng)計圖.
(3)學(xué)校欲從這50名學(xué)生中,隨機抽取1名學(xué)生參加上級部門組織的讀書活動,其中被抽到學(xué)生的讀書時間不少于9小時的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)想一想,完成下面的說理過程.
如圖,已知AB∥CD,∠B=∠D
求證:∠E=∠DFE.
證明:∵AB∥CD (已知 ),
∴∠B+∠ =180°( )
又∵∠B=∠D(已知 )
∴∠D +∠BCD=180°( )
∴ ( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( )
A. 20 B. 24 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com