【題目】如圖 1 的矩形中,有一點(diǎn)在上,現(xiàn)以為折線(xiàn)將點(diǎn)往右折,如圖2所示,再過(guò)點(diǎn)作于點(diǎn),如圖3所示,若, 則圖3中的長(zhǎng)度為____.
【答案】8
【解析】
作AH⊥BC于H,則四邊形AFCH是矩形,AF=CH,AH=CF. 在Rt△ABH中,解直角三角形即可解決問(wèn)題.
解:作AH⊥BC于H,則四邊形AFCH是矩形,AF=CH.
在Rt△ABE中,∠BAE=90°,∠BEA=60°
∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°
由題意得∠ABH=90°-2∠ABE=90°-30°×2=30°
在Rt△ABH中,∠ABH=30°,AB=12,BC=26
∴BH=ABcos30°=12×=18
∴CH=BC-BH=26-18=8.
即AF=8.
故答案為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,對(duì)角線(xiàn),相交于點(diǎn),且,.動(dòng)點(diǎn),分別從點(diǎn),同時(shí)出發(fā),運(yùn)動(dòng)速度均為lcm/s.點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止.點(diǎn)沿運(yùn)動(dòng),點(diǎn)到點(diǎn)停留4后繼續(xù)運(yùn)動(dòng),到點(diǎn)停止.連接,,,設(shè)的面積為(這里規(guī)定:線(xiàn)段是面積為0的三角形),點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)求線(xiàn)段的長(zhǎng)(用含的代數(shù)式表示);
(2)求時(shí),求與之間的函數(shù)解析式,并寫(xiě)出的取值范圍;
(3)當(dāng)時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.連接
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)當(dāng)的面積等于的面積時(shí),求的值;
(3)當(dāng)時(shí),若點(diǎn)是軸正半軸上上的一個(gè)動(dòng)點(diǎn),點(diǎn)是拋物線(xiàn)上動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AC=BC=2,M是邊AC的中點(diǎn),于H.
(1)求MH的長(zhǎng)度;
(2)求證:;
(3)若D是邊AB上的點(diǎn),且為等腰三角形,直接寫(xiě)出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究 如圖,在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)經(jīng)過(guò)兩點(diǎn)且與軸的負(fù)半軸交于點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)若為直線(xiàn)上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐 標(biāo);
(3)已知分別是直線(xiàn)和拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)以為頂點(diǎn)的四邊形 是平行四邊形,且以為邊時(shí),請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=6,點(diǎn)E,F分別在BC,CD上,若BE=,∠EAF=45°,則AF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與雙曲線(xiàn)交于點(diǎn)A,過(guò)點(diǎn)作AO的平行線(xiàn)交雙曲線(xiàn)于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,骰子有六個(gè)面并分別標(biāo)有數(shù)1,2,3,4,5,6,如圖2,正六邊形頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者擲一次骰子,骰子向上的一面上的數(shù)字是幾,就沿正六邊形的邊順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈;若第二次擲得2,就從開(kāi)始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈;……設(shè)游戲者從圈起跳.
(1)小明隨機(jī)擲一次骰子,求落回到圈的概率;
(2)小亮隨機(jī)擲兩次骰子,用列表法或畫(huà)樹(shù)狀圖法求最后落回到圈的概率,并指出他與小明落回到圈的可能性一樣嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com