分析 如圖,作DH∥AC交AB于H.首先證明△ADH是等邊三角形,設AD=DH=AH=x,由DH∥AC,得$\frac{DH}{AC}$=$\frac{BH}{BA}$,可得$\frac{x}{4}$=$\frac{6-x}{6}$,解方程即可.
解答 解:如圖,作DH∥AC交AB于H.
∵∠BAC=120°,DA平分∠ABC,
∴∠HDA=∠DAC=∠DAH=60°,
∴△ADH是等邊三角形,設AD=DH=AH=x,
∵DH∥AC,
∴$\frac{DH}{AC}$=$\frac{BH}{BA}$,
∴$\frac{x}{4}$=$\frac{6-x}{6}$,
∴x=$\frac{12}{5}$,
∴AD=$\frac{12}{5}$,
故答案為$\frac{12}{5}$.
點評 本題考查等邊三角形的判定和性質、平行線分線段成比例定理、角平分線的定義等知識,解題的關鍵是學會添加常用輔助線,學會用方程的思想思考問題,屬于中考?碱}型.
科目:初中數學 來源: 題型:選擇題
A. | 甲經過54分鐘到達目的地 | |
B. | 乙比甲晚出發(fā)12分鐘 | |
C. | 當乙到達目的地時甲、乙兩人所走的路程比為5:9 | |
D. | 若乙到達目的地后繼續(xù)往前走,當甲到達目的地時乙比甲多走140米 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com